
P4Cub: A Little Language for Big Routers
Rudy Peterson

Cornell University

Ithaca, NY, USA

rnp39@cornell.edu

Eric Hayden Campbell

Cornell University

Ithaca, NY, USA

ehc86@cornell.edu

John Chen

Cornell University

Ithaca, NY, USA

jc2786@cornell.edu

Natalie Isak

Microsoft

Cambridge, MA, USA

ngi2@cornell.edu

Calvin Shyu

Cornell University

Ithaca, NY, USA

cws225@cornell.edu

Ryan Doenges

Cornell University

Ithaca, NY, USA

rhd89@cornell.edu

Parisa Ataei

Cornell University

Ithaca, NY, USA

psa43@cornell.edu

Nate Foster

Cornell University

Ithaca, NY, USA

jnfoster@cs.cornell.edu

Abstract
P4Cub is a new intermediate representation (IR) for the P4

programming language that is designed to facilitate the de-

velopment of certified tools. It is organized around a small

set of core constructs that avoid complexities found in the

surface language such as side effects in expressions, mutual

recursion between the expressions and statements, and so on.

Still, P4Cub retains the essential domain-specific features of

P4 itself. P4Cub has a front-end based on Petr4, and has been

fully mechanized in Coq including big-step and small-step

semantics and a type system. We have built several certi-

fied tools using P4Cub including a type soundness proof, a

compiler pass, and an automated verification tool.

CCS Concepts: • Software and its engineering → For-
mal software verification; Domain specific languages;
Semantics; Incremental compilers; • Networks→ Pro-
gramming interfaces.

Keywords: Coq, P4, formal semantics, formal verification,

intermediate representations, domain-specific languages.

ACM Reference Format:
Rudy Peterson, Eric Hayden Campbell, John Chen, Natalie Isak,

Calvin Shyu, Ryan Doenges, Parisa Ataei, and Nate Foster. 2023.

P4Cub: A Little Language for Big Routers. In Proceedings of the 12th
ACM SIGPLAN International Conference on Certified Programs and

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

CPP ’23, January 16–17, 2023, Boston, MA, USA
© 2023 Association for Computing Machinery.

ACM ISBN 979-8-4007-0026-2/23/01. . . $15.00

https://doi.org/10.1145/3573105.3575670

Proofs (CPP ’23), January 16–17, 2023, Boston, MA, USA. ACM, New

York, NY, USA, 17 pages. https://doi.org/10.1145/3573105.3575670

1 Introduction
Well-designed intermediate representations (IR) underpin

some of the most successful compiler frameworks includ-

ing LLVM [18] and CompCert [20]. IRs enforce abstraction

boundaries between source and target languages and they

also influence the design of compiler passes that translate

between them. In the context of mechanized compilers like

CompCert, IRs affect the structure and complexity of correct-

ness proofs. However, existing mechanized IRs are ill-suited

for reasoning about domain-specific languages because they

are based on general-purpose programming constructs.

This paper presents a new mechanized IR for P4 called

P4Cub. P4 is a domain-specific language for network data

planes that is seeing growing use both as a language for

specifying functionality on programmable devices (switches,

NICs, end-hosts, etc.) and as a language for modeling the

behavior of conventional, fixed-function devices (e.g., Google

uses P4 to model their data center switches for differential

testing [1]).

Existing formalizations of P4 are based on the language’s

surface syntax, which is complex and unwieldy to work

with [8]. Where a P4 programmer sees flexible syntax and

expressive abstractions, proof engineers see convoluted se-

mantics and knotty inductive proofs. Of course, similar chal-

lenges arise in other languages, but they are particularly

egregious in the case of P4, as the language has very little

essential complexity. Fortunately, as it turns out, there is an

elegant language embedded within P4—it just needs to be

pulled out into a “little language” of its own.

At a high level, our design for P4Cub is based on two main

considerations. First, we exploit P4’s essential simplicity—it

has no loops, recursion, memory management, dynamic al-

location, or higher-order features—to design a core language

https://orcid.org/0000-0003-3249-5960
https://orcid.org/0000-0001-5954-2136
https://orcid.org/0000-0002-4589-615X
https://orcid.org/0000-0003-4229-8901
https://orcid.org/0000-0003-3874-5123
https://orcid.org/0000-0002-6899-4529
https://orcid.org/0000-0002-6703-2360
https://orcid.org/0000-0002-6557-684X
https://doi.org/10.1145/3573105.3575670
https://doi.org/10.1145/3573105.3575670


CPP ’23, January 16–17, 2023, Boston, MA, USA R. Peterson, E. Campbell, J. Chen, N. Isak, C. Shyu, R. Doenges, P. Ataei, and N. Foster

organized around a set of simple and orthogonal constructs.

We demonstrate how to compile P4’s surface language into

P4Cub, and we highlight how our static and dynamic seman-

tics eliminate redundant rules.

Second, we embed P4Cub into Coq in a manner that seeks

to streamline the development of formal proofs. For exam-

ple, although P4’s surface syntax is presented using named

variables, P4Cub uses a nameless representation of terms.

As has been shown in prior work, nameless representations

can simplify mechanized proofs, since 𝛼-equivalence comes

for free. Similarly, while P4 allows side effects like function

calls and match-action table invocations to appear in both

expressions and statements, P4Cub requires all side effects

to occur at the statement level, which eliminates a tricky

mutual recursion between the two. We provide a compiler

pass to lift all side effects occurring in expressions up to the

statement level.

At the same time, P4Cub does not distill P4 down to its

absolute essence. Instead, it strives to retain the central fea-

tures of P4 such as header types, parsers, and match-action

tables. This approach allows P4 experts to carry out proofs

in terms of familiar, relatively high-level, domain-specific

constructs. As we show using case studies, P4Cub can be

readily applied to a variety of problems including proofs of

type soundness, verification of compilers, and construction

of tools for verifying P4 programs themselves.

The rest of the paper is organized as follows. First, we

give a brief overview to P4 and P4Cub (Section 2). Next, we

define P4Cub’s syntax (Section 3) and semantics (Section 4).

After that, we present our Coq implementation (Section 5)

and case studies (Section 6). Finally, we discuss related work

(Section 7) and conclude with a brief discussion of possible

directions for future work (Section 8).

2 Overview
P4 is a domain-specific language based on a collection of

relatively high-level abstractions for specifying network data

planes. The core of P4 is based on a relatively simple imper-

ative language, extended with a few domain-specific con-

structs such as header types, parser state machines, and

match-action tables. We briefly review these constructs for

readers unfamiliar with the language, before highlighting a

few representative aspects of our design for P4Cub.

P4’s header types and parser state machines convert packets
into typed representations that can be manipulated in the

rest of the program.

header ethernet_t { bit <48> dstAddr;

bit <48> srcAddr;

bit <16> ethTyp; }

parser MyParser(packet_in packet ,

out headers hdr , inout metadata meta ,

inout standard_metadata_t standard_metadata) {

state start {

packet.extract(hdr.ethernet);

transition select(hdr.ethernet.ethTyp) {

0x8100: reject;

default: accept;

} } }

In this example, the header type captures the standard format

for Ethernet packets with 112 bits. The parser extracts 112

bits from the packet and performs a simple form of validation,

checking that the Ethernet type field is not 0x8100 (i.e., that

the packet does not carry a VLAN tag).

P4’s match-action tables describe configurable procedures
that can be managed by the control-plane at runtime—either

a traditional distributed routing protocol or a

software-defined networking controller.

control MyIngress(inout headers hdr , inout metadata meta ,

inout standard_metadata_t standard_metadata) {

action drop() {

mark_to_drop(standard_metadata);

}

action fwd(bit <9> port) {

standard_metadata.egress_spec = port;

}

table sw {

key = { hdr.ethernet.dstAddr: exact; }

actions = { fwd; drop; }

}

apply { sw.apply(); }

}

Here, the control block consists of a single match-action

table sw that looks up the destination address in the Ethernet

header in the table and either forwards the packet or drops

it. Note that the semantics of the table is not specified by

the P4 program itself—to understand whether and how it

forwards packets, we need to know the values of the keys

and actions of the entries in the table.

In addition to these domain-specific features, P4 provides

a number of other constructs. As features have been added

over time, the language has grown in size and complexity,

which makes it harder to build implementations. In the rest

of this section, we highlight a few of the complexities that

arise in P4’s surface syntax, and briefly discuss how they are

streamlined in P4Cub.

Example 1. P4’s type system provides domain-specific con-

structs for modeling the structure of packets, as well as stan-

dard constructs for organizing other program data, often

leading to redundancy. For instance, P4 includes header and
struct types, both of which describe record-like structures

whose values can be accessed using “dot” notation. Follow-

ing is a struct that could be used to encode the headers

found in a standard TCP/IP packet.

struct headers {

ethernet_t ethernet;

ipv4_t ipv4;

tcp_t tcp;

}

Despite the differences between header and struct types—

e.g., values of the former type have a validity bit that tracks

initialization and the fields are serialized in declaration order,

whereas values of the latter do not have a validity bit and



P4Cub: A Little Language for Big Routers CPP ’23, January 16–17, 2023, Boston, MA, USA

have unordered fields—we chose to combine the two into a

single type in P4Cub, using a boolean flag to distinguish the

minor differences in their semantics. Similarly, P4’s header

stacks, which can be used to capture the structure of MPLS

packets among others, are encoded in P4Cub using standard

arrays, which eliminates another form of redundancy at the

type system level.

Example 2. P4’s original design lacked functions,
1
but it has

always allowed parser and control declarations to be used
as macros, factoring out common functionality into reusable

blocks of code that can be instantiated many times. For

instance, the control declaration below models a generic

access-control table that forwards or drops the packet based

on a single byte:

control acl(inout bit <8> k)() {

table t {

key = { k : exact }

actions = { drop; forward }

}

apply { t.apply () }

}

This control can be instantiated and invoked multiple times

in the “main” control on different arguments:

control c(...) {

acl() c1;

acl() c2;

apply {

c1.apply(x);

c2.apply(y);

}

}

P4 imposes restrictions to ensure that a control used in

this way can always be flattened and inlined into a single

top-level control:

control c(...) {

table t1 {

key = { x : exact; }

action = { drop; forward; }

}

table t2 {

key = { y : exact; }

action = { drop; forward; }

}

apply {

t1.apply();

t2.apply();

}

}

In contrast, P4Cub disallows nested parser and control
instantiations and instead requires them to be instantiated

at the top level—nested instantiations do not increase the ex-

pressiveness of the language, and they can always be inlined

as in the example.

Example 3. As a final example, P4 allows match-action

tables to be invoked from expressions, and also supports

branching on the results of table invocation:

1
Top-level functions were added to the language in version 1.1.0, but with a

number of restrictions [22].

switch (sw.apply().action_run) {

fwd: { f.count(); }

drop: { r.count(); }

}

For simplicity, P4Cub only allows table invocations at the

statement level, and requires branching on the results to be

implemented using standard conditionals. The front-end pro-

vides translations to convert programs written in the surface

syntax into IR programs that satisfy these restrictions.

3 Syntax
With this background, we are now ready to introduce P4Cub

itself. The syntax of P4Cub has many elements of a standard

imperative language, including arithmetic, structs, arrays,

and assignment. It also retains the domain-specific features

of P4 meant to reflect common idioms found in network

programs, even though it would be possible to encode them

in terms of other constructs—e.g., tables could become con-

ditionals. This design choice ensures that programs can be

configured by the control-plane and readily compiled to a

variety of targets.

As discussed in the introduction, the primary goal of our

design for P4Cub is to streamline formal, mechanized rea-

soning about P4 programs. Toward this goal, P4Cub’s syntax

is based on three primary ideas. First, we eliminate many

P4 features including strings, enums, header-unions (C-style

unions of header-types in P4), and header-stacks (arrays of

headers) by compiling them into simpler constructs. Second,

we adopt de Bruijn indices for type and term variables in the

mechanization, to ease reasoning about compiler transfor-

mations, especially ones that introduce new variable decla-

rations. Third, we limit side effects to statements. In other

words, similar to Clight, side effects may not be arbitrarily

nested deep in expressions. Instead, they must appear at the

statement level. This restriction makes P4Cub’s semantics

simpler and eliminates mutual induction between statements

and expressions in proofs.

Formally, P4Cub’s syntax is divided into types, expres-

sions, parser-transition expressions, statements, declarations

within controls, and top-level declarations, as shown in Fig-

ure 1 through Figure 3 (see the appendix for declarations). A

reference to the metavariables used throughout the paper is

provided in Table 1.

P4Cub expression types, shown in Figure 1, include base

types such as bit-strings bit⟨𝑛⟩, type variables, arrays, head-
ers, and structs. Type variables are encoded with de Bruijn

indices. Conceptually, P4 headers are struct-like datatypes

that represent packet headers in the networking sense, e.g.,

an IP header or an Ethernet header. These headers are seg-

mented into fields which specify addresses, flags, and the

like–data that often varies in size and may not even be byte-

aligned. To accommodate this, numeric datatypes in P4 have

the form bit⟨𝑛⟩ and int⟨𝑝⟩, with widths of 𝑛 and 𝑝 bits re-

spectively. Unlike P4, widths do not need to be multiples of



CPP ’23, January 16–17, 2023, Boston, MA, USA R. Peterson, E. Campbell, J. Chen, N. Isak, C. Shyu, R. Doenges, P. Ataei, and N. Foster

Table 1. Metavariables.

Symbol Name Symbol Name

𝜏 type 𝑏 bool

𝑧 integer 𝑛 natural number

𝑝 positive number 𝑥 string

arg argument prm parameter

e expression pat select pattern

𝑙 parser state label pt parser transition

s statement cd control declaration

td top declaration 𝑣 value

𝑙𝑣 left-value arg𝑣 evaluated argument

cx syntactic context Γ typing environment

𝜖 value environment sig typing signals

sgl evaluation signals 𝜓 extern state

fnst function types fns functions

instt instance type instst instance types

inst instance insts instances

8. Since headers are similar to structs we represent both by

struct𝑏 𝜏 , where 𝑏 is true for headers and false for stan-

dard structs and 𝜏 is a list of types that corresponds to fields

since field names are natural numbers instead of identifiers.

It is important to distinguish the two because there are some

differences between header and struct types—e.g., values
of the former type have a validity bit that tracks initialization

and the fields are serialized in declaration order, whereas the

latter do not have a validity bit and have unordered fields.

Example 4. The following code snippet shows the P4Cub
encoding of the headers struct and ethernet_t header, which
were used in Example 1.

struct false {

struct true {

bit <48> ;

bit <48> ;

bit <16> ; } ;

...

}

Note that fields do not have names and that type declara-

tions must be inlined. P4Cub also requires type synonyms

and constants to be inlined. For better optimization, P4Cub

flattens declarations and hoists instantiations to the top level.

P4Cub expressions, shown in Figure 1, share primitive P4

operations such as bit-slicing, casts, arithmetic, and struct

membership. Term variables also use de Bruijn indices. List

literals including structs, headers, and arrays are collapsed

into one Coq constructor. Squishing multiple constructs into

one reduces case analyses in proofs—it prevents having to

prove similar cases for all three variants. Structs and head-

ers are accessed by a natural number whereas arrays are

indexed by an arbitrary numeric expression, modulo restric-

tions set by the type system. Like P4, P4Cub separates parser

transition expressions from expressions and distinguishes

declarations within controls from top-level declarations.

Types:

𝜏 F bool booleans
| bit⟨𝑛⟩ unsigned integers
| int⟨𝑝⟩ signed integers
| 𝜏 [𝑛] arrays
| struct𝑏 𝜏 structs/headers
| 𝑛 type variables

Operators:

⊖ F ! | ∼ | −
⊕ F + | − | ∗ | ÷ | mod

| == | ! = | && | | | | | + | | | − |
| & | | | ˆ | ∼ | ++ | ≪ | ≫
| < | ≤ | > | ≥

Expressions:

e F 𝑏 boolean
| 𝑧⟨𝑛⟩ unsigned integer
| 𝑧⟨𝑝⟩ signed integer
| 𝜏 𝑛 variable
| e[𝑝 : 𝑝] bit-slicing
| (𝜏) e cast
| ⊖ e unary operation
| e ⊕ e binary operation
| {e} list literal
| e[e] array indexing
| e.𝑛 struct member

Select Patterns:

pat F _ wild pattern
| 𝑧⟨𝑛⟩ unsigned integer
| 𝑧⟨𝑝⟩ signed integer
| pat &&& pat bit-mask
| pat .. pat range
| pat list/struct pattern

Parser State Labels:

𝑙 F start start label
| accept accept label
| reject reject label
| 𝑛 user-defined label

Parser Transition Expressions:

pt F direct 𝑙 direct state transition
| select e 𝑙 {pat ⇒ 𝑙} select transition

Figure 1. P4Cub expression syntax.

Arguments and parameters do not have names, defined in

Figure 2, as they use de Bruijn indices. There are three kinds

of parameters:



P4Cub: A Little Language for Big Routers CPP ’23, January 16–17, 2023, Boston, MA, USA

Arguments:

arg F in e in-arguments
| out e out-arguments
| inout e inout-arguments

Parameters:

prm F in 𝜏 in-parameters
| out 𝜏 out-parameters
| inout 𝜏 inout-parameters

Figure 2. P4Cub arguments and parameters.

Statements:

s F skip skip
| return e return
| exit exit
| goto pt parser transition
| e := e assignment
| e 𝑥 ⟨𝜏⟩(arg) function call
| 𝑥 (e, arg) action call
| e 𝑥 𝑥 ⟨𝜏⟩(arg) method call
| invoke 𝑥 table invocation
| apply 𝑥 (arg) apply statements
| let e in s let binding
| s; s sequencing
| if e then s else s conditional

Figure 3. P4Cub statement syntax.

• in parameters are read-only and are initialized by copy-

ing the value of the corresponding argument when the

invocation is executed;

• out parameters are uninitialized; an argument passed

as an out parameter must be accompanied with a stor-

age reference (an l-value), and after the execution of

the call, the value of the parameter is copied to the

corresponding storage location; and

• inout parameters are both in and out.

Statements in P4Cub, shown in Figure 3, can be divided

into atomic statements, such as skip, return e, parser transi-
tion statements; and compound statements that determine

the program’s control flow, such as conditionals and sequenc-

ing. Atomic statements end statement blocks and do not

introduce new variables (de Bruijn identifiers) into scope.

Variable declarations let e in s shift the de Bruijn context up

by binding e to de Bruijn index 0 in block s, thus, it does
not escape the scope of s. P4Cub only allows side effects at

the statement level. Thus, function calls, invocation of ta-

bles, applications of parsers and controls, and extern method

calls must be statements. For instance, the P4 code shown in

Example 3 would be written as Example 5 in P4Cub.

Example 5. Note that since action_run is the third field

of the apply_result struct for table sw it has been trans-

formed to field 2. The invoke must occur at the statement

level, no longer embedded in the field projection. Further-

more the enum members for action_run are compiled to

unsigned integers, where the width represents the number

of members and the value the position in the member list.

There are no switch statements in P4Cub so it becomes a

nested conditional where each guard checks equality to a

member of the enum.

var sw.invoke ();

if 0.2 = 2W0 {

f.count();

} else if 0.2 = 2W1 {

r.count();

} else {

skip

}

Like P4, P4Cub distinguishes between different kinds of

procedure calls. P4Cub programs can call functions, actions,

tables, external methods, parsers, and controls. Each kind of

call behaves differently and represents a different component

of a packet-processing pipeline.

Example 6. We show the MyIngress control illustrated in

Section 2 in P4Cub.

control MyIngress ()

(out struct false { header true { bit <48> ; bit <48> ;

bit <16> } },

inout struct false { },

inout struct false { ... }) {

action drop()() { mark_to_drop (2); }

action fwd(bit <9>)() { 3.1 = 0; }

table sw {

key = { 0.0.0: exact; }

actions = { fwd; drop; } }

apply { sw.invoke; }

}

The code for fwd illustrates the de Bruijn indices in play.

The input structs are respectively headers, metadata, and
standard_metadata_t. The original variable for the latter
has de Bruijn index 2 which becomes 3 because of fwd’s
argument. Controls also have separate extern arguments.

4 Static and Dynamic Semantics
Figure 4 defines the environments, stores, and contexts used

in P4Cub’s type system. Figure 5 defines such for P4Cub’s

operational semantics. Environments Γ and stores 𝜖 are lists

of types and values, respectively, that associate de Bruijn

indices (the list’s indices) to types or values, respectively.

Thus, looking up a variable 𝑛’s type from the environment

Γ returns the type at the 𝑛’s index in the environment, de-

noted Γ 𝑛. The same notation is used to look up a variable

in the store. We write 𝜏 :: Γ to indicate appending 𝜏 to the

“beginning” of the environment.

The function fnst maps a function’s name to the number

of type parameters, expression parameters, and return type.



CPP ’23, January 16–17, 2023, Boston, MA, USA R. Peterson, E. Campbell, J. Chen, N. Isak, C. Shyu, R. Doenges, P. Ataei, and N. Foster

Expression Typing Environment:

Γ F 𝜏 A list of types

Typing Function Environment:

fnst F ∅ Empty
| fnst, 𝑥 ↦→ (𝑛, 𝜏, 𝜏) Signature

Instance Types:

instt F 𝜏, 𝜏 Action signature
| (𝑥, 𝑛, 𝜏, 𝜏) Extern type
| Prsr 𝜏 Parser type
| Ctrl 𝜏 Control type
| Table Table

Typing Environment:

instst F ∅
| instst, 𝑥 ↦→ instt

Typing Syntactic Contexts:

cx F Prsr 𝑛 instst Parser
| Ctrl instst Control
| Fn 𝜏 Function

Typing Signal:

sig F Cn continue
| Ex exit
| Rt 𝜏 return a type
| Tr transition

Figure 4. Typing environment, context, and signal syntax.

P4Cub stores instance information—such as a parser instance

or a control instance—in an “instance” type and supports in-

stance types for actions, externs, parsers, controls, and tables.

Action types contain the signature of control-plane parame-

ters and that of data-plane parameters. Extern instance types

include the name of each method with its signature, much

like a function’s signature. Parser and control instances each

contain the types of runtime parameters. Tables do not need

a signature as they are only invoked with their name. In the

paper all instance types are kept in one environment instst
which maps names to instance types. In the implementation

they are kept in separate namespaces.

The function fns maps a function’s name to the available

functions in scope and its body. The instance types instt
have corresponding instances inst for evaluation. Action
closures have the local expression and instance environment

and the action’s body. Control instances include the local

function and instance environment and the control’s apply

block. Parser instances also include the local function and

instance environment as well as the parser’s start and user-

defined states. Table declarations are paired with the number

of term variables declared in the control before it. As will

Expression Evaluation Store:

𝜖 F 𝑣 A list of values

Evaluation Function Environment:

fns F ∅ Empty
| fns, 𝑥 ↦→ (fns, s) Closure

Evaluation Instances:

inst F 𝜖, insts, s Action closure
| fns, insts, s Control
| fns, insts, s, s Parser
| 𝑛, e, (𝑥, arg)) Table

Evaluation Environment:

insts F ∅
| insts, 𝑥 ↦→ inst

Evaluation Syntactic Contexts:

cx F Prsr 𝑛 s s insts Parser
| Ctrl insts Control
| Function Function

Evaluation Signal:

sgl F Cn continue
| Ex exit
| Rt 𝑣 return a value
| Accept accept
| Reject reject

Figure 5. Eval. environment, context, and signal syntax.

be shown in the evaluation rule for tables, this is used to

split the store to evaluate the match-action table. Instances

for externs are not included here because they are handled

internally by the target-dependent extern environment 𝜓 .

Again for expository simplicity, all “instances” are in the

same environment but in the implementation have separate

namespaces.

The typing syntactic context cx defines the syntactic con-
text where a statement is placed and it contains different

scope information of the statement for each kind of context.

For example, theCtrl instst is used when inside a control dec-
laration, such as an action declaration or a control’s apply

block. It has information such as the tables defined within

the current control, the actions declared, and other control

instances in scope. This information is not needed when

typing or evaluating a parser state. The Prsr 𝑛 instst contains
information only needed for parsers, such as the number of

states of the current parser-state machine and other parser

instances in scope. These two contexts also contain available

extern type signatures. The Fn 𝜏 is used when inside of a

top-level defined function with the return type 𝜏 . Unlike

other contexts, it does not provide any information about



P4Cub: A Little Language for Big Routers CPP ’23, January 16–17, 2023, Boston, MA, USA

parser, control, nor extern instances because functions in P4

are not allowed to invoke any of these.

Evaluation syntactic contexts are used in the dynamic se-

mantics to provide environments and information about the

enclosing syntactic context. Similarly to the typing syntactic

contexts the evaluation version includes information par-

ticular to different blocks of a program. The parser context

includes the number of parameters, start state, and user-

defined states of the enclosing parser, as well as the available

parser instances in scope. The control context includes the

tables and actions of the enclosing control, as well as the

available control instances in scope.

A typing or evaluation signal, sig and sgl, respectively,
indicates whether control flow continues. They are also used

to check that a statement is properly formed within its con-

text. Signals such as Cn and Rt are essentially the same as

in other imperative languages. An Ex signal indicates that
the entire program should stop evaluating. Indeed, Ex halts
execution all the way up to the packet-processing pipeline

level, whereas Rt only interrupts the enclosing statement

block. The Rt 𝜏 typing signal returns a type while the evalu-

ation Rt 𝑣 signal returns a value. Tr is similar to return but

for the parser-state machine and it helps to verify that a

parser-state terminates with a transition statement. In our

implementation, more specific signals are used to embody if

the packet was accepted or rejected in parsing: Accept and
Reject.

4.1 Type System
Figure 6 shows the expression typing rules, most of which

are straightforward. As just mentioned, the environment

Γ is a list of types where the index of a type is de Bruijn

term identifier and Γ 𝑛 denotes looking up the 𝑛th variable

in the environment. We use the same notation for look up in

any list. For example, the T-Member rule states that the 𝑛’s

member of expression e has the type 𝜏 if expression e has a
struct type where its𝑛’s field has the type 𝜏 , which is denoted

by the look up function 𝜏 𝑛. In T-BinOp, the helper function

bop_type ⊕ 𝜏1 𝜏2 determines the type of the expression based

on the binary operator and its operands. As an example,

bop_type + bit⟨𝑛⟩ bit⟨𝑛⟩ = bit⟨𝑛⟩. We also take advantage

of P4’s numeric data types such as bit⟨𝑛⟩, which permit one

to specify unsigned integers bound by 2
𝑛
. As an example,

T-Index allows any term of type bit⟨𝑛⟩ to index into an array,
because the length of the array is the upper-bound on values

of such terms. This ensures that evaluating a well-typed

array index expression cannot cause an out of bounds error.

Typing a list expression {e} just types its elements, that is,

Γ ⊢ e : 𝜏 .
Figure 6 also shows statement typing rules. Note that by

using de Bruijn indices we eliminate the need to update the

environment—new variables are only introduced in a local

scope by let e in s. Thus, the T-LetIn is the only place where

the environment is locally extended. Additionally, no bind-

ings “leak,” so there is no need to produce an environment

with the declared variable bound.

Terminal statements such as exits, returns, and transitions

produce a unique signal. Some rules such as T-ActCall, T-

ApplyCtrl, and T-Invoke look up signatures of the invokee

in the syntactic context rather than Γ. This is due to the fact

that some P4 constructs can only be called in certain places

which is captured by the context. For instance, transitioning

to a different parser state, shown in T-Transition rule, is

only reasonable in a parser context.

The statement typing rules use multiple helper judgments,

provided in Appendix A, which use a subscript under their

inference symbol—e.g., 𝑛, Γ ⊢𝑝 pt represents the judgment

form of parser transition typing. The rules use some helper

functions and predicates. The T-FnCall rule states that call-

ing the function 𝑥 with the return expression e𝑟 , type ar-

guments 𝜏arg , and arguments arg results in a Cn signal if 𝑥

exists in the context and it has |𝜏arg | type parameters, the

return type 𝜏𝑟 , and parameters 𝜏 ; the return expression e𝑟
can be evaluated to an l-value (denoted by helper predicate

lvalue_ok e𝑟 ), and e𝑟 and arg type check. To type check e𝑟
and arg type substitutions must be performed using the

type arguments 𝜏arg. e𝑟 is typed as return type 𝜏𝑟 substituted

with type arguments 𝜏arg (denoted by the helper function

tsub 𝜏arg 𝜏𝑟 ). The arguments arg are typed as the parameters

𝜏 substituted with type arguments 𝜏arg (again, denoted by the

helper tsub 𝜏arg 𝜏). tsub 𝜏 𝜏 substitutes de Bruijn type vari-

ables in 𝜏 with 𝜏 : the first type argument is substituted for

0, the second for 1, and so on. Note that we take advantage

of the list notation when a judgment or function is being

mapped to a list. For example, in T-ApplyCtrl, Γ ⊢arg arg : 𝜏

states that arguments arg have the type 𝜏 .

4.2 Evaluation
Figure 7 shows the big-step semantics of expressions. Expres-

sions evaluate to values, defined in Figure 8. Additionally,

sometimes expressions are partially evaluated to l-values,
also defined in Figure 8. L-values represent assignable loca-

tions, such as an array index, a struct field, or a variable.

De Bruijn stores 𝜖 are a list of values. Expressions do

not introduce new variables so no de Bruijn shifts are re-

quired. The rules are self-explanatory. Similar to typing of a

list expression, the evaluation of it is also just mapping the

judgment onto the list, that is, ⟨𝜖, e⟩ ⇓ 𝑣 .

Figure 9 shows the big-step semantics of statements. For

evaluating statements we need a store 𝜖 , a context cx, and
an extern state𝜓 .𝜓 represents the state of external objects
(also known as externs). P4Cub takes advantage of direct

Coq definitions of targets and externs. Thus, in our formal-

ization here, we leave the definition mostly opaque. This

detail is hidden in helper functions such as exec_extern. For
instance, E-MtdCall is the only rule that changes the extern



CPP ’23, January 16–17, 2023, Boston, MA, USA R. Peterson, E. Campbell, J. Chen, N. Isak, C. Shyu, R. Doenges, P. Ataei, and N. Foster

P4Cub’s expression typing rules:

Γ ⊢ e : 𝜏 Γ ⊢ 𝑏 : bool
T-Bool

0 ≤ 𝑧 < 2
𝑛

Γ ⊢ 𝑧⟨𝑛⟩ : bit⟨𝑛⟩
T-Bit

−2𝑝−1 ≤ 𝑧 < 2
𝑝−1

Γ ⊢ 𝑧⟨𝑝⟩ : int⟨𝑝⟩
T-Int

Γ 𝑛 = 𝜏

Γ ⊢ 𝜏 𝑛 : 𝜏
T-Var

Γ ⊢ e : struct𝑏 𝜏
𝜏 𝑛 = 𝜏

Γ ⊢ e.𝑛 : 𝜏
T-Mem

Γ ⊢ e : 𝜏 numeric_width 𝑛 𝜏

𝑝1 ≤ 𝑝2 < 𝑛

Γ ⊢ e[𝑝2 : 𝑝1] : bit⟨𝑝2 − 𝑝1 + 1⟩
T-Slice

Γ ⊢ e : 𝜏 ′

proper_cast 𝜏 ′ 𝜏

Γ ⊢ (𝜏) e : 𝜏
T-Cst

Γ ⊢ e : 𝜏
uop_type ⊖ 𝜏 𝜏 ′

Γ ⊢ ⊖ e : 𝜏 ′
T-Un

Γ ⊢ e1 : 𝜏1 Γ ⊢ e2 : 𝜏2
bop_type ⊕ 𝜏1 𝜏2 = 𝜏

Γ ⊢ e1 ⊕ e2 : 𝜏
T-Bi

Γ ⊢ e1 : 𝜏 [2𝑛]
Γ ⊢ e2 : bit⟨𝑛⟩
Γ ⊢ e1 [e2] : 𝜏

T-Idx

Γ ⊢ e : 𝜏

Γ ⊢ {e} : {𝜏}
T-Lists

P4Cub’s statement typing rules:

Γ, fnst, cx ⊢ s ⊣ sig Γ, fnst, cx ⊢ skip ⊣ Cn
T-Skp

Γ ⊢ e : 𝜏

Γ, fnst, Fn 𝜏 ⊢ return e ⊣ Rt
T-Rtrn

exit_ok cx

Γ, fnst, cx ⊢ exit ⊣ Ex
T-Ext

𝑛, Γ ⊢𝑝 pt

Γ, fnst, Prsr 𝑛 instst ⊢ goto pt ⊣ Tr
T-Trns

lvalue_ok e1
Γ ⊢ e1 : 𝜏 Γ ⊢ e2 : 𝜏

Γ, fnst, cx ⊢ e1 := e2 ⊣ Cn
T-Asgn

instst 𝑥 = (𝜏𝑐 , 𝜏𝑑 ) Γ ⊢ e : 𝜏𝑐
Γ ⊢arg arg : 𝜏𝑑

Γ, fnst,Ctrl instst ⊢ 𝑥 (e, arg) ⊣ Cn
T-ActCall

fnst 𝑥 = |𝜏arg |, 𝜏, 𝜏𝑟 lvalue_ok e𝑟
Γ ⊢ e𝑟 : tsub 𝜏arg 𝜏𝑟 Γ ⊢arg arg : tsub 𝜏arg 𝜏

Γ, fnst, cx ⊢ e𝑟 𝑥 ⟨𝜏arg⟩(arg) ⊣ Cn
T-FnCall

cx 𝑥 𝑥𝑚 = ( |𝜏arg |, 𝜏, 𝜏𝑟 ) lvalue_ok e𝑟
Γ ⊢ e𝑟 : tsub 𝜏arg 𝜏𝑟 Γ ⊢arg arg : tsub 𝜏arg 𝜏

Γ, fnst, cx ⊢ e𝑟 𝑥 𝑥𝑚 ⟨𝜏arg⟩(arg) ⊣ Cn
T-MtdCall

instst 𝑥 = Ctrl 𝜏 Γ ⊢arg arg : 𝜏

Γ, fnst,Ctrl instst ⊢ apply 𝑥 (arg) ⊣ Cn
T-ApplyCtrl

instst 𝑥 = Prsr 𝜏 Γ ⊢arg arg : 𝜏

Γ, fnst, Prsr 𝑛 instst ⊢ apply 𝑥 (arg) ⊣ Cn
T-ApplyPrsr

instst 𝑥 = Table

Γ, fnst,Ctrl instst ⊢ invoke 𝑥 ⊣ Cn
T-Invoke

Γ ⊢ e : 𝜏 𝜏 :: Γ, fnst, cx ⊢ s ⊣ sig

Γ, fnst, cx ⊢ let e in s ⊣ sig
T-LetIn

Γ, fnst, cx ⊢ s1 ⊣ Cn
Γ, fnst, cx ⊢ s2 ⊣ sig

Γ, fnst, cx ⊢ s1; s2 ⊣ sig
T-Seq

Γ ⊢ e : bool Γ, fnst, cx ⊢ s1 ⊣ sig
1

Γ, fnst, cx ⊢ s2 ⊣ sig
2

Γ, fnst, cx ⊢ if e then s1 else s2 ⊣ lub sig
1
sig

2

T-Condi

Figure 6. P4Cub expression and statement typing.

environment𝜓 , all other statement evaluation rules simply

propagate such a change.

The left-hand side of an assignment in the E-Asgn rule

and some arguments in function calls in the E-FunCall rule

are partially evaluated to l-values. This is because we want

to get a location they represent in the environment 𝜖 that

can be used to update a value in 𝜖 which is provided by l-

values. The evaluation of expressions to l-values is given in

Figure 14, Appendix A. The helper lv_set assigns the l-value’s
underlying variable (a de Bruin identifier) the new composite

value at that location. For instance, lv_set (𝑏 5[0]) true 𝜖

updates the first element of the array to be true which is



P4Cub: A Little Language for Big Routers CPP ’23, January 16–17, 2023, Boston, MA, USA

⟨𝜖, e⟩ ⇓ 𝑣 ⟨𝜖, 𝑏⟩ ⇓ 𝑏
E-Bool

⟨𝜖, 𝑧⟨𝑛⟩⟩ ⇓ 𝑧⟨𝑛⟩
E-Bit

⟨𝜖, 𝑧⟨𝑝⟩⟩ ⇓ 𝑧⟨𝑝⟩
E-Int

𝜖 𝑛 = 𝑣

⟨𝜖, 𝜏 𝑛⟩ ⇓ 𝑣
E-Var

⟨𝜖, e⟩ ⇓ 𝑣

⟨𝜖, ⊖ e⟩ ⇓ ⊖ 𝑣
E-Un

⟨𝜖, e⟩ ⇓ 𝑣 eval_slice 𝑝1 𝑝2 𝑣 = 𝑣 ′

⟨𝜖, e[𝑝1 : 𝑝2]⟩ ⇓ 𝑣 ′
E-Slice

⟨𝜖, e⟩ ⇓ 𝑣 eval_cast 𝜏 𝑣 = 𝑣 ′

⟨𝜖, (𝜏) e⟩ ⇓ 𝑣 ′
E-Cast

⟨𝜖, e1⟩ ⇓ 𝑣1 ⟨𝜖, e2⟩ ⇓ 𝑣2

⟨𝜖, e1 ⊕ e2⟩ ⇓ 𝑣1 ⊕ 𝑣2
E-Bin

⟨𝜖, e⟩ ⇓ 𝑣 𝑛 𝑣 = 𝑣

⟨𝜖, e.𝑛⟩ ⇓ 𝑣
E-Mem

⟨𝜖, e⟩ ⇓ 𝑣

⟨𝜖, {e}⟩ ⇓ {𝑣}
E-Lists

⟨𝜖, e1⟩ ⇓ 𝑣 ⟨𝜖, e2⟩ ⇓ 𝑧⟨𝑛⟩ 𝑧 𝑣 = 𝑣

⟨𝜖, e1 [e2]⟩ ⇓ 𝑣
E-Index

Figure 7. P4Cub expression evaluation.

Values:

𝑣 F 𝑏 boolean
| 𝑧⟨𝑛⟩ unsigned integer
| 𝑧⟨𝑝⟩ signed integer
| {𝑣} list

L-values:

𝑙𝑣 F 𝜏 𝑛 variable
| 𝑙𝑣 [𝑝 : 𝑝] bit-slicing
| 𝑙𝑣 [𝑧] array indexing
| 𝑙𝑣 .𝑛 struct member

Evaluated Arguments:

arg𝑣 F in 𝑣 evaluated in-argument
| out 𝑙𝑣 evaluated out-argument
| inout 𝑙𝑣 evaluated inout-argument

Figure 8. P4Cub value syntax.

sitting at the fifth position in 𝜖 , all other elements of the

array remain the same. The E-Asgn rule states that after e2
is fully evaluated to 𝑣 and e1 is evaluated to an l-value 𝑙𝑣 , the

location represented by 𝑙𝑣 in 𝜖 is updated with a new value,

the difference being the component is now represented by 𝑣 .

As mentioned in Section 3, arguments are specified by

in, out, or inout. This matters in evaluating call statements.

Arguments specified as in are simply input to the procedure,

a standard notion of function arguments. Those specified as

out are evaluated to l-values. Any out parameters in function

bodies are assigned a value during their evaluation. As in

E-FunCall, when copy_out is performed, the value from the

function’s evaluation environment 𝜖 ′ is used to update the

call environment 𝜖 at the location represented by the l-value.

For example, suppose some function 𝑓 has a parameter out 𝑏
at index 0 and is being applied with an argument out 𝑏 1,

where 1 is a de Bruijn variable index. The de Bruijn variable

is evaluated to the (identical) l-value 𝑏 1 by E-LVar. Suppose

in the body of 𝑓 , parameter 0 is assigned to false. When the

evaluation of 𝑓 concludes, copy_out looks up that 0 is false
in 𝜖 ′, and assigns 1 to false in 𝜖 . Arguments specified as

inout serve as both in and out. E-MtdCall also uses copy_in
and copy_out. Because extern methods are externally de-

fined, not in the program syntax, E-MtdCall must make

use of𝜓 and exec_extern to resolve the extern.

Every parser state is a statement block terminated by a

well-typed transition pt which evaluates to a label. If the

label indicates an intermediate state, either the start state or
a user-defined state, then the appropriate state is looked up

and evaluated, conducted by the E-TrnsI rule. If the label in-

dicates a final state, such as accept (meaning the packet was

successfully parsed) or reject (meaning an error in extract-

ing the packet’s bits occurred), then the state-machine has

concluded evaluating, conducted by the E-TransFinal rule,

and control flow goes back to the application of the parser.

Both E-TransFinal and E-TransI use the parser transition

helper judgment provided in Figure 14, Appendix A. The

application of the parser is shown in the E-ApplyP rule and

it states that parsers may be applied by other parsers given

arguments. As in E-FunCall copy_in and copy_out are used
for the arguments to the state-machine.

P4 adopts non-standard scoping conventions. For example,

action calls use lexical scope, evident by the E-ActCall rule

which looks up both the action’s body and a closure environ-

ment, that is, insts 𝑥 = (𝜖cl, insts′, s). On the other hand, table
invocation and parser transitions use a scheme similar to

dynamic scope, evident by the E-Invoke and E-TransI rules

that do not use a closure environment. Specifically, E-TransI

begins with environment 𝜖1 ++𝜖2, and the next parser state is
then evaluated using 𝜖2 rather than a closure environment,

as done in the E-ActCall rule. This evaluation occurs within

that of the whole state-machine of a parser with |𝜖2 | parame-

ters/arguments. Thus when transitioning states in E-TransI

only the last |𝜖2 | values in the environment 𝜖1 ++ 𝜖2 should

be used when evaluating the next state: 𝜖1 represents vari-

ables introduced within the current parser block before the

transition takes place. Similarly, in E-Invoke a list append

𝜖1++𝜖2 is used to separate the values in the environment. 𝜖2 is

the part of the environment with de Bruijn indices in scope



CPP ’23, January 16–17, 2023, Boston, MA, USA R. Peterson, E. Campbell, J. Chen, N. Isak, C. Shyu, R. Doenges, P. Ataei, and N. Foster

⟨𝜓, fns, 𝜖, cx, s⟩ ⇓ ⟨𝜖 ′, sgl,𝜓 ′⟩ ⟨𝜓, fns, 𝜖, cx, skip⟩ ⇓ ⟨𝜖,Cn,𝜓 ⟩
E-Skp

⟨𝜓, fns, 𝜖, cx, exit⟩ ⇓ ⟨𝜖, Ex,𝜓 ⟩
E-Ext

⟨𝜖, e⟩ ⇓ 𝑣

⟨𝜓, fns, 𝜖, cx, return e⟩ ⇓ ⟨𝜖,Rt 𝑣,𝜓 ⟩
E-Rtrn

final 𝑙 sgl ⟨𝜖, pt⟩ ⇓𝑝 𝑙

⟨𝜓, fns, 𝜖, Prsr 𝑛 s s insts, goto pt⟩ ⇓ ⟨𝜖, sgl,𝜓 ⟩
E-TransF

get_state_block s s 𝑙 = s′ intermediate 𝑙 ⟨𝜖1 ++ 𝜖2, pt⟩ ⇓𝑝 𝑙

⟨𝜓, fns, 𝜖2, Prsr |𝜖2 | s s insts, s′⟩ ⇓ ⟨𝜖3, sgl,𝜓 ′⟩
⟨𝜓, fns, 𝜖1 ++ 𝜖2, Prsr |𝜖2 | s s insts, goto 𝑝⟩ ⇓ ⟨𝜖1 ++ 𝜖3, sgl,𝜓 ′⟩

E-TrnsI

𝑙 ⟨𝜖, e1⟩ ⇓𝑙𝑣 𝑙𝑣 ⟨𝜖, e2⟩ ⇓ 𝑣

⟨𝜓, fns, 𝜖, cx, e1 := e2⟩ ⇓ ⟨lv_set 𝑙𝑣 𝑣 𝜖,Cn,𝜓 ⟩
E-Asgn

fns 𝑥 = fns′, s 𝑙 ⟨𝜖, e⟩ ⇓𝑙𝑣 𝑙𝑣 ⟨𝜖, arg⟩ ⇓arg arg𝑣
⟨𝜓, fns′, copy_in arg𝑣 𝜖, Function, s⟩ ⇓ ⟨𝜖 ′,Rt 𝑣,𝜓 ′⟩

⟨𝜓, fns, 𝜖, cx, e 𝑥 ⟨𝜏⟩(arg)⟩ ⇓ ⟨lv_set 𝑙𝑣 𝑣 (copy_out arg𝑣 𝜖 ′ 𝜖),Cn,𝜓 ′⟩
E-FunCall

insts 𝑥 = (𝜖cl, insts′, s) ⟨𝜖, e⟩ ⇓ 𝑣 ⟨𝜖, arg⟩ ⇓arg arg𝑣
⟨𝜓, fns, 𝑣 ++ copy_in arg𝑣 𝜖cl,Ctrl insts′, s⟩ ⇓ ⟨𝜖 ′,Rt,𝜓 ′⟩

⟨𝜓, fns, 𝜖,Ctrl insts, 𝑥 (e, arg)⟩ ⇓ ⟨copy_out arg𝑣 𝜖 ′ 𝜖,Cn,𝜓 ′⟩
E-ActCall

𝑙 ⟨𝜖, e⟩ ⇓𝑙𝑣 𝑙𝑣 ⟨𝜖, arg⟩ ⇓arg arg𝑣 exec_extern𝜓 𝑥 𝑥𝑚 𝜏 arg𝑣 = (𝑣, arg𝑣
′
,𝜓 ′)

⟨𝜓, fns, 𝜖, cx, e 𝑥 𝑥𝑚 ⟨𝜏⟩(arg)⟩ ⇓ ⟨lv_set 𝑙𝑣 𝑣 (copy_out arg𝑣
′
𝜖),Cn,𝜓 ′⟩

E-MtdCall

insts 𝑥𝑡 = ( |𝜖2 |, e𝑘 , (𝑥, arg)) match_actions𝜓 e𝑘 (𝑥, arg) = 𝑥𝑎, e, arg
⟨𝜓, fns, 𝜖2,Ctrl insts, 𝑥𝑎 (e, arg)⟩ ⇓ ⟨𝜖 ′,Cn,𝜓 ′⟩

⟨𝜓, fns, 𝜖1 ++ 𝜖2,Ctrl insts, invoke 𝑥𝑡 ⟩ ⇓ ⟨𝜖1 ++ 𝜖 ′,Cn,𝜓 ′⟩
E-Invoke

insts 𝑥 = fns′, insts′, s ⟨𝜖, arg⟩ ⇓arg arg𝑣
⟨𝜓, fns′, copy_in arg𝑣 𝜖,Ctrl insts′, s⟩ ⇓ ⟨𝜖 ′, sgl,𝜓 ′⟩

⟨𝜓, fns, 𝜖,Ctrl insts, apply 𝑥 (arg)⟩ ⇓ ⟨copy_out arg𝑣 𝜖 ′ 𝜖,Cn,𝜓 ′⟩
E-ApplyC

insts 𝑥 = fns′, insts′, s′, s′

⟨𝜓, fns′, copy_in arg𝑣 𝜖, Prsr |arg | s′ s
′ insts′, s′⟩ ⇓ ⟨𝜖 ′, sgl,𝜓 ′⟩

⟨𝜓, fns, 𝜖, Prsr 𝑛 s s insts, apply 𝑥 (arg)⟩ ⇓ ⟨copy_out arg𝑣 𝜖 ′ 𝜖,Cn,𝜓 ′⟩
E-ApplyP

⟨𝜖, e⟩ ⇓ 𝑣 ⟨𝜓, fns, 𝑣 :: 𝜖, cx, s⟩ ⇓ ⟨𝑣 ′ :: 𝜖 ′, sgl,𝜓 ′⟩
⟨𝜓, fns, 𝜖, cx, let e in s⟩ ⇓ ⟨𝜖 ′, sgl,𝜓 ′⟩

E-LetIn

interrupt sgl
⟨𝜓, fns, 𝜖, cx, s1⟩ ⇓ ⟨𝜖 ′, sgl,𝜓 ′⟩

⟨𝜓, fns, 𝜖, cx, s1; s2⟩ ⇓ ⟨𝜖 ′, sgl,𝜓 ′⟩
E-SeqI

⟨𝜓, fns, 𝜖, cx, s1⟩ ⇓ ⟨𝜖 ′,Cn,𝜓 ′⟩
⟨𝜓 ′, fns, 𝜖 ′, cx, s2⟩ ⇓ ⟨𝜖 ′′, sgl,𝜓 ′′⟩
⟨𝜓, fns, 𝜖, cx, s1; s2⟩ ⇓ ⟨𝜖 ′′, sgl,𝜓 ′′⟩

E-SeqC

⟨𝜖, e⟩ ⇓ true
⟨𝜓, fns, 𝜖, cx, s1⟩ ⇓ ⟨𝜖 ′, sgl,𝜓 ′⟩

⟨𝜓, fns, 𝜖, cx, if e then s1 else s2⟩ ⇓ ⟨𝜖 ′, sgl,𝜓 ′⟩
E-CondT

⟨𝜖, e⟩ ⇓ false ⟨𝜓, fns, 𝜖, cx, s2⟩ ⇓ ⟨𝜖 ′, sgl,𝜓 ′⟩
⟨𝜓, fns, 𝜖, cx, if e then s1 else s2⟩ ⇓ ⟨𝜖 ′, sgl,𝜓 ′⟩

E-CondF

Figure 9. P4Cub statement evaluation.



P4Cub: A Little Language for Big Routers CPP ’23, January 16–17, 2023, Boston, MA, USA

at the table’s definition. 𝜖1 represents variables introduced

after the table declaration. To ensure any de Bruijn indices

in the data plane arguments look up the correct values in the

environment 𝜖1 ++ 𝜖2, a suffix 𝜖2 of the environment is used,

whose length is equal to the number of variables in scope at

the syntactic place of the table. Since the table’s declaration,

we have that |𝜖1 | variables have been declared in the control.

5 Implementation
P4Cub’s Coq implementation itself runs to roughly 7,400

lines of code and uses Petr4 [8] as a front-end for the lexer,

parser, and type checker. P4Cub is divided into modules

for syntax, semantics, and program transformations. P4Cub

syntax and semantics are essentially complete but do have

a few relatively minor limitations. These limitations do not

preclude using P4Cub for real-world programs andwe expect

addressing them will be straightforward. In the future, we

hope to prove many properties for statements such as type

soundness and semantic preservation for different stages of

the compiler.

6 Case Studies
To evaluate our design for P4Cub, we present a series of case

studies using the language to perform a variety of tasks. In

Section 6.1 and Section 6.2 we study how de Bruijn indices

improve both proof and code quality, by exploring type sys-

tem metatheory and a compiler pass respectively. Finally,

in Section 6.3, we describe a prototype verifier, and observe

how the streamlined P4Cub syntax simplifes the effort.

6.1 Metatheory
We have proven preservation and progress of the big-step

evaluation of expressions.

Theorem 7. Expression evaluation preserves typing.

∀ 𝜖 e 𝑣 Γ 𝜏,
⟨𝜖, e⟩ ⇓ 𝑣 → ⊢𝑣 𝜖 : Γ → Γ ⊢ e : 𝜏 →⊢𝑣 𝑣 : 𝜏

Theorem 8. A well-typed expression will evaluate.

∀ Γ e 𝜏 𝜖, ⊢𝑣 𝜖 : Γ → Γ ⊢ e : 𝜏 → ∃ 𝑣, ⟨𝜖, e⟩ ⇓ 𝑣

Furthermore we have shown preservation and progress

hold for l-expression evaluation. Here we can see the divi-

dends of our choice to use de Bruijn indices—each of these

theorems has a premise ⊢𝑣 𝜖 : Γ, which indicates that all of

the values in the store 𝜖 have type Γ at the same de Bruijn

index. This ensures that when evaluating a variable, its cor-

responding value in the store preserves its type. We have

found this to be a much easier way to relate the typing Γ and

evaluation 𝜖 as opposed to having mappings from strings to

types or values. ⊢𝑣 𝜖 : Γ succinctly indicates both that Γ and

𝜖 have the same domain of (de Bruijn) variable names and

that their elements type correspondingly.

Expression evaluation is also deterministic:

Theorem 9. Determinism.

∀ 𝜖 𝑒 𝑣1 𝑣2, ⟨𝜖, 𝑒⟩ ⇓ 𝑣1 → ⟨𝜖, 𝑒⟩ ⇓ 𝑣2 → 𝑣1 = 𝑣2

In Coq it looks like:

Theorem expr_deterministic : forall 𝜖 e v1 v2,

⟨ 𝜖, e ⟩ ⇓ v1 ->

⟨ 𝜖, e ⟩ ⇓ v2 -> v1 = v2.

Proof.

intros eps e v1 v2 Hv1; generalize dependent v2;

induction Hv1 using custom_expr_big_step_ind;

intros V2 HV2; inv HV2; f_equal; auto 4.

pose proof Forall2_forall_impl_Forall2

_ _ _ _ _ _ _ H0 _ H4 as h.

rewrite Forall2_eq in h; assumption.

Qed.

In the future, we plan to prove analogous properties for

statement evaluation, completing type soundness proofs for

the full big-step semantics. We have verified a few auxiliary

properties for statement evaluation, such as the following.

Theorem 10. The de Bruijn store’s length is preserved by
statement evaluation.

∀ fns 𝜓 𝜓 ′ 𝜖 𝜖 ′ cx s sgl,
⟨𝜓, fns, 𝜖, cx, s⟩ ⇓ ⟨𝜖 ′, sgl,𝜓 ′⟩ → |𝜖 | = |𝜖 ′ |

This property ensures that de Bruijn indices have the same

meaning before and after a statement is evaluated. For our

full theorem of statement preservation we will hope to show

that input and output stores type as the same Γ. This proof
has been automated in Coq.

Lemma sbs_length : forall Ψ 𝜖 𝜖′ c s sig 𝜓 ,

⟨ Ψ, 𝜖, c, s ⟩ ⇓ ⟨ 𝜖′, sig , 𝜓 ⟩
-> length 𝜖 = length 𝜖′.
Proof using.

intros ? ? ? ? ? ? ? h;

induction h; autorewrite with core in *; auto; lia.

Qed.

Proving progress of statement big-step evaluation will

require reasoning about program termination. Parser state

machines in particular may prove difficult. We hope to build

on work such as Leapfrog [10], which is implementing pow-

erful tools to reason about packet-parsing state machines,

and perhaps adopt their methods to formally verify prop-

erties of P4Cub parsers. Nevertheless, even this initial case

study, mechanized in Coq, demonstrates the utility of the

P4Cub IR for formal reasoning.

6.2 Compiler Passes
We are currently building a compiler from P4Cub to Clight.

We hope to be able to verify semantics-preservation for each

translation between IRs. P4Cub and Clight both require func-

tion calls to take place at the statement level. However, C

does not have numeric data-types such as P4’s bit⟨𝑛⟩ and
int⟨𝑝⟩ for arbitrary bit-length 𝑛 or 𝑝 respectively. C only

supports specific sizes for unsigned and signed integers. To

translate to C we must use a bit-vector library that generates

P4 integer literals as function calls in Clight. This means



CPP ’23, January 16–17, 2023, Boston, MA, USA R. Peterson, E. Campbell, J. Chen, N. Isak, C. Shyu, R. Doenges, P. Ataei, and N. Foster

literals such as 𝑧⟨𝑛⟩ must be moved to the statement level

in-order to be compiled to Clight.

We have implemented a pass from P4Cub to P4Cub to

lift such terms to the top-level of expressions. This pass has

been verified to produce actually “lifted" terms, and has been

shown to preserve both expression typing and evaluation.

The implementation and correctness specifications for this

pass influenced our decision to adopt a de Bruijn convention

for term variables. We found the specification to be much

more elegant and the proofs more tractable than those of a

standard naming convention.

The lifting pass for expressions, represented by the judg-

ment (e ⇑ e, e′), works by generating both a new “lifted”

term, e′, as well as list of terms that will become variable

declarations, e. This pass performs any necessary de Bruijn

shifts on resultant and intermediate terms. If a term needs

to be entirely lifted to the statement level it is replaced with

a variable of index 0, and the lifted term is pushed to the

stack of lifted terms to become variable declarations. This un-

winding of lifted term variables occurs at the statement-level,

where all of the variable declarations envelope the block for

which these variables will be in scope.

The specification of the correctness theorem uses a re-

lation between the right-hand-side terms-to-be and their

values. The statement uses the relation eval_decl_list 𝜖 e 𝑣 ,
which says that in context 𝜖 , e evaluates to 𝑣 .

Theorem 11.
∀ 𝜖 e e′ e 𝑣, ⟨𝜖, e⟩ ⇓ 𝑣 → e ⇑ e, e′ →

∃ 𝑣, eval_decl_list 𝜖 e 𝑣
∧⟨𝑣 ++ 𝜖, e′⟩ ⇓ 𝑣

In English, this theorem shows that lifted terms evaluate

to the same value as the original. However, when a term is

lifted it produces a sequence of other terms. This sequence of

terms will become a series of embedded variable declarations

let e1 in let e2 in ...e′..., where e′ is the lifted version of the

original term. Therefore the environment to evaluate e′ will
also depend upon the series of variable declarations. This

unwinding of the list e in the specification is expressed as

eval_decl_list 𝜖 e 𝑣 , and it gives us the appropriate environ-

ment to evaluate the lifted term. We have further proven

that evaluation is preserved after lifted terms are unwound

in the corresponding statement.

We are working to show that the lifting pass correctly

preserves such properties for other levels of P4Cub syntax.

Statements have proved to be particularly challenging but we

hope to soon fully prove the lifting pass preserves statement

evaluation. Subgoals for cases such as variable declarations

are promising but there is still work to be done.

6.3 A Program Verifier
We have prototyped a program verifier for P4Cub pro-

grams à la p4v [21], Aquila [25], and Vera [24]. The core of

this verifier is a compiler from P4Cub to Dijkstra’s Guarded

Command Logic (GCL) [7]. Targeting a well-understood cal-

culus allows us to use standard verification algorithms in-

stead of having to reimplement them from scratch for P4Cub.

The design of the compiler is shown in Figure 10. It is a

two-pass compiler from P4Cub to GCL via another IR called

Inline. The Inline IR is like P4Cub in every way except

that all invocations of abstractions (extern methods, parser

transitions, tables, actions, and applications) are replaced

with their definitions.

Implementing this pass required navigating with Coq’s no-

toriously conservative termination checker. Replacing func-

tion names with substituted function bodies, for instance,

could certainly run forever if P4Cub programs contained re-

cursive calls. Rather than prove this, we add a gas parameter

to the inlining function to temporarily bypass the termina-

tion checker. Using a separate AST lets us quarantine this

termination bypass in our code.

The only place where recursion may truly exist is in the

parser—a common design pattern for parsing header stacks

is to use a state with a self-loop. Fortunately, the P4 lan-

guage specification [22] requires parser loops to be finitely

unrollable. So we can get away with providing an additional

unroll parameter that specifies how many times to unroll

the parser. There’s a subtle difference between the unroll
and gas parameters—running gas to 0 triggers a compilation

failure, prompting the user to try again with more, while

running unroll to 0 causes the parser-inliner to stop un-

rolling.

One advantage of keeping the core parser logic in P4Cub

is that verifiers can choose different representation strategies

for parsers. In certain domains (e.g. verification), we’ve found

it advantageous to use Aquila’s encoding optimization [25],

however in others (e.g., certain synthesis tasks), the prepon-

derance of new variables it introduces can be costly. Leaving

the parser in the IR lets us choose our encoding based on

the task at hand. In the verifier we use Aquila’s encoding

trick, which avoids the potential blowup of naively inlining

each state [25]. Each state 𝑠 (including accept and reject) is
given a 1-bit ghost variable _state$𝑠$next, which is 1when
𝑠 is the next state to be executed. Then transitions amount

to setting the appropriate bits and the unrolled states can be

printed sequentially.

After inlining, we perform a few elimination passes, which

is where the streamlined nature of P4Cub really shines. For

example, rather than writing separate elimination logic for

lists, structs, headers, and arrays, we can handle them all with

a single case. Once the program has been reduced to solely

use bitvector expressions, we can compile the statements to

GCL directly as done in p4v [21].

Retaining tables in P4Cub leaves verifiers freedom in mod-

eling tables. Tables can be compiled away using ghost vari-

ables [21]. However, different ghost variable models are

appropriate for different verification tasks [6, 12, 24]. The

choice of table model affects compilation and verification



P4Cub: A Little Language for Big Routers CPP ’23, January 16–17, 2023, Boston, MA, USA

P4Cub.v Inline.v GCL.v

SMTLibZ3
✓

×

parser MyParser(packet_in packet ,

out headers hdr , inout metadata meta ,

inout standard_metadata_t standard_metadata) {

state start {

packet.extract(hdr.ethernet);

transition accept; } }

control MyIngress(inout headers hdr , inout metadata meta ,

inout standard_metadata_t standard_metadata) {

action drop() { mark_to_drop(standard_metadata); }

action fwd(bit <9> port) {

standard_metadata.egress_spec = port;}

table sw {

key = { hdr.ethernet.dstAddr: exact; }

actions = { fwd; drop; } }

apply { sw.apply(); }}

_state$accept$next := (_ bv0 1);

_state$reject$next := (_ bv0 1);

_state$start$next := (_ bv1 1);

{ assume (not (= _state$start$next (_ bv1 1)))

} [] { assume (= _state$start$next (_ bv1 1));

_state$start$next := (_ bv0 1);

hdr.ethernet.is_valid := (_ bv1 1);

_state$accept$next := (_ bv1 1)

};

{ assume (not (= _state$accept$next (_ bv1 1))) } [] {

assume (= _state$accept$next (_ bv1 1));

assert (= hdr.ethernet.is_valid (_ bv1 1));

assume (= _symb$sw$match_0 hdr.ethernet.dstAddr);

{ assume (= _symb$sw$action (_ bv0 1));

_return$sw.action_run := (_ bv0 1);

standard_metadata.egress_spec := (_ bv511 9)

} [] {

assume (= _symb$sw$action (_ bv1 1));

_return$sw.action_run := (_ bv1 1);

standard_metadata.egress_spec :=

_symb$sw$fwd$arg$port

}

}

Figure 10. Compilation from P4 surface syntax (bottom left) to GCL (right). Top left shows the compiler design; modules

above the dotted line are extracted to OCaml, modules below the line are written in OCaml.

condition generation. To allow for these various backend ap-

proaches we parameterize the compiler module with a func-

tion Variable called instr, which maps table data (name,

keys, and actions) to an implementation. This allows users

of the verification tool to plug in the table model most fitting

for their analysis.

For example, Figure 10 shows a particular implementation

choice for a single table sw. We use ghost variables to sym-

bolically represent the runtime contents of the table. The

variable _symb$sw$action symbolically represents the con-

troller’s action choice, _symb$sw$fwd$arg$port represents

the port action data variable for the fwd action in table sw,
and _symb$sw$match_0 represents the 0th match key in ta-

ble sw. We then assume that these are equal to the relevant

values, leveraging nondeterminism to capture the full range

of possible table states.

Finally, we extract all of the modules and tie them together

in OCaml to build our program verifier. In OCaml, we convert

our GCL program into an SMT-LIB term using a standard

verification condition generation algorithm [7, 13], and pass

that term to Z3, which determines whether it is valid ( ✓ )

or invalid ( × ).

Figure 10 shows an example verification problemwemight

pose to a verifier. We’ll highlight a few aspects of the transla-

tion. Here, we’re checking that the undefined value triggered

by accessing invalid headers never arises.
2
In the source

P4 program, the only header-data read occurs in the key

2
This so-called header validity problem is akin to the pointer nullability

problem in Java or C, and has been heavily studied [5, 11, 12, 21, 24].

clause of the table sw, where we read the dstAddr field

of the hdr.ethernet header. In the compiled GCL code

on the right of the figure, this read is translated into two

statements (highlighted in blue ): the first asserts that the

hdr.ethernet header is valid (which crashes rather than

producing an undefined value), and the second assumes that

the header field hdr.ethernet.dstAddr is equivalent to

_symb$sw$match_0, which symbolically represents the ta-

ble’s match values. Note that GCL does not have structured

data or headers: each dot in hdr.ethernet.is_valid is not
an operator, it is just part of the identifier.

To manually prove that this assertion is never violated,

we can examine the translation of the parser. Observe that

hdr.ethernet is extracted in the start state, which is

always executed. In corresponding the GCL code, we set the

validity bit for the Ethernet header to 1, which will prove

the assertion. To prove this automatically, we compute a

standard quadratic-size verification condition [13] in SMT-

LIB, and check its validity using Z3.

7 Related Work
We briefly survey the most relevant related work to P4Cub,

focusing on IRs, certified frameworks, and P4 verification.

Intermediate Representations. LLVM [18] is perhaps

the most well-known modern compiler IR—its SSA abstrac-

tion allows for efficient compilation of many languages. One

of the more notable success stories is the Clang compiler [17]

for C/C++ and Objective-C. The MLIR project [19] evolved



CPP ’23, January 16–17, 2023, Boston, MA, USA R. Peterson, E. Campbell, J. Chen, N. Isak, C. Shyu, R. Doenges, P. Ataei, and N. Foster

from LLVMas a general purpose IR targeting domain-specific

languages, including in machine learning, with built-in ab-

stractions for domain-specific customization. ILA [15], like

P4Cub, is meant to be a low-level IR for special-purpose hard-

ware targets but, unlike P4Cub, is meant for heterogeneous

hardware accelerators rather than network programs.

Certified Frameworks. P4Cub also draws inspiration

from Coq frameworks like CompCert [20], a C compiler

with a fully mechanized semantics preservation proof for

a subset of the C language. In the future, we plan to prove

similar correctness theorems for P4Cub’s various backends.

The Vellvm project [27] provides a formal semantics for a

subset of LLVM, to facilitate the development of certified

LLVM compilers. Finally, the Verified Software Toolchain [3]

is an ongoing project developing static analyzers, program

verifiers, and compilers for the C programming language,

including program logics like Verifiable C [4].

P4 Verification. Petr4 [8] and
P4K [16] have both defined formal semantics for the P4 lan-

guage, while Petr4 realized P4’s type system and proved it

sound. Other type systems and formal models for P4 have

been explored [11, 12], though none suffice as compiler IRs,

being themselves highly idealized versions of the language.

P4v [21], Aquila [25], Vera [24], and Assert-P4 [14] are P4

program verifiers that translate P4 to GCL to compute veri-

fication conditions. The closest lines of work to P4Cub are

Verifiable P4 [26] and HOL-P4 [2]. Verifiable P4 is a program

logic for proving properties of P4 programs in Coq. It oper-

ates on a slightly higher-level IR, P4light, which resembles

P4 surface syntax more closely than P4Cub. P4light is a good

fit for a program logic meant to verify programs as they are

written, but this fidelity to surface P4 makes it more awk-

ward than P4Cub for compilation and automated verification.

HOL-P4 is a contemporaneous mechanization of P4 using

the HOL4 theorem prover. Like P4Cub, it uses Petr4 as a

front-end, but adopts a different approach to modeling the

semantics—e.g., it uses a stack rather than a heap.

8 Conclusion and Future Work
P4Cub is a new mechanized IR for P4 that provides a clean

foundation for building certified tools. It is available as an

open source project on GitHub under the Apache2 license,

and is intended to be a resource for the entire community. In

the future, we plan to continue building on P4Cub, including

developing an verified compiler that uses CompCert as a

backend. We plan to explore formalizing various standard

protocols in P4, using P4Cub to obtain a fully-verified refer-

ence implementation. Finally, we hope to work with the P4

Language Design Working Group to get P4Cub’s semantics

adopted as a companion to the official language specification.

9 Data-Availability Statement
This paper’s artifact is available here [23]. A full release is

available here [9].

Acknowledgments
The authors wish to thank the CPP ’23 reviewers for helpful

suggestions, and Pico and Leo for their support. This work

was funded in part by DARPA under contract HR0011-20-C-

0107 and by the NSF under grant FMiTF-1918396.

A Supporting Judgments

Control declarations:

cd F var e local
| action 𝑥 (𝜏) (prm) {s} action
| table 𝑥 {key = e; actions = (𝑥, arg)} table

Figure 11. P4Cub declarations within controls.

Top-level declarations:

td F instance 𝑥 of 𝑥 (𝜏) instantiate
| extrn 𝑥 ⟨𝑛⟩{𝜏 𝑥 ⟨𝑛⟩(prm)} extern
| ctrl 𝑥 (prm){cd} apply s controls
| prsr 𝑥 (prm) start = s {s} parsers
| 𝜏 𝑥 ⟨𝑛⟩(prm){s} functions

Figure 12. P4Cub top-level program declarations.

B Declaration Syntax
As shown in Figure 11 and Figure 12, P4Cub distinguishes

between declarations that may occur within control blocks,

denoted by cd, and those that occur at the top-level of a

program, denoted by td. P4Cub control declarations include
(de Bruijn) local variable declarations, and actions and tables

which represent the eponymous constructs of match-action

tables. Actions interface with the control-plane of switches,

and as such have parameters for the control-plane and those

for the data plane. Control-plane parameters are given as

𝜏 , and data plane parameters are given as prm. P4Cub table

declarations include a key provided by e, which is used by

the control-plane as input to determine which action to call.

They are also used to determine control-plane arguments.

The actions field (𝑥, arg) names actions to call. Each action

name is paired with data plane arguments provided by the

programmer.

The top-level instantiates are controls, parsers, externs,

and the “main” pipeline itself. Notice that unlike P4, P4Cub

disallows nested parser and control instantiations and in-

stead requires them to be instantiated at the top level—nested



P4Cub: A Little Language for Big Routers CPP ’23, January 16–17, 2023, Boston, MA, USA

Parser transition typing:

𝑛, Γ ⊢𝑝 pt

valid_state 𝑛 𝑙

𝑛, Γ ⊢𝑝 direct 𝑙
T-DirectTrans

Γ ⊢ e : 𝜏 valid_state 𝑛 𝑙

pat : 𝜏 valid_state 𝑛 𝑙

𝑛, Γ ⊢𝑝 select e 𝑙 {pat ⇒ 𝑙}
T-SelectTrans

Pattern typing:

pat : 𝜏

_ : 𝜏
T-Wild

𝑧⟨𝑛⟩ : bit⟨𝑛⟩
T-BitPat

𝑧⟨𝑝⟩ : int⟨𝑝⟩
T-IntPat

pat
1
: bit⟨𝑛⟩

pat
2
: bit⟨𝑛⟩

pat
1
&&& pat

2
: bit⟨𝑛⟩

T-Mask

pat
1
: bit⟨𝑛⟩

pat
2
: bit⟨𝑛⟩

pat
1
.. pat

2
: bit⟨𝑛⟩

T-Range

pat : 𝜏

pat : 𝜏
T-ListPat

Argument typing:

Γ ⊢arg arg : 𝜏

Γ ⊢ e : 𝜏

Γ ⊢arg in e : 𝜏
T-In

Γ ⊢ e : 𝜏

Γ ⊢arg out e : 𝜏
T-Out

Γ ⊢ e : 𝜏

Γ ⊢arg out e : 𝜏
T-Inout

Figure 13. Helper judgments for P4Cub statement typing.

instantiations do not increase the expressiveness of the lan-

guage, and they can always be inlined. For example, P4Cub

only allows the second control c definition in Example 2.

These instances are those applied in apply statements, as

well as the externs used in method calls. Like P4, P4Cub

extern declarations are merely a signature of the functional-

ity provided by the underlying target architecture. Extern

declarations provide the methods’ signatures that are avail-

able for the programmer to call. Declarations of controls are

composed of a list of cd (actions and tables), with a final s
representing the apply block of the control. This apply block

Parser transition expression evaluation:

⟨𝜖, pt⟩ ⇓𝑝 𝑙

⟨𝜖, direct 𝑙⟩ ⇓𝑝 𝑙
E-DirTrns

⟨𝜖, e⟩ ⇓ 𝑣 𝑣 matches pat ⇒ 𝑙 ′ ∈ pat ⇒ 𝑙

⟨𝜖, select e 𝑙 {pat ⇒ 𝑙}⟩ ⇓𝑝 𝑙 ′
E-TrnsMtch

⟨𝜖, e⟩ ⇓ 𝑣

𝑣 has no matches in pat ⇒ 𝑙

⟨𝜖, select e 𝑙 {pat ⇒ 𝑙}⟩ ⇓𝑝 𝑙
E-TrnsDflt

Argument evaluation:

⟨𝜖, arg⟩ ⇓arg arg𝑣

⟨𝜖, e⟩ ⇓ 𝑣

⟨𝜖, in e⟩ ⇓arg in 𝑣
E-In

𝑙 ⟨𝜖, e⟩ ⇓𝑙𝑣 𝑙𝑣
⟨𝜖, out e⟩ ⇓arg out 𝑙𝑣

E-Out

𝑙 ⟨𝜖, e⟩ ⇓𝑙𝑣 𝑙𝑣
⟨𝜖, inout e⟩ ⇓arg inout 𝑙𝑣

E-Inout

L-value evaluation:
𝑙 ⟨𝜖, e⟩ ⇓𝑙𝑣 𝑙𝑣

𝑙 ⟨𝜖, 𝜏 𝑛⟩ ⇓𝑙𝑣 𝜏 𝑛
E-LVar

𝑙 ⟨𝜖, e⟩ ⇓𝑙𝑣 𝑙𝑣
𝑙 ⟨𝜖, e[𝑝1 : 𝑝2]⟩ ⇓𝑙𝑣 𝑙𝑣 [𝑝1 : 𝑝2]

E-LSlice

𝑙 ⟨𝜖, e⟩ ⇓𝑙𝑣 𝑙𝑣
𝑙 ⟨𝜖, e.𝑛⟩ ⇓𝑙𝑣 𝑙𝑣 .𝑛

E-LMem

𝑙 ⟨𝜖, e1⟩ ⇓𝑙𝑣 𝑙𝑣 ⟨𝜖, e2⟩ ⇓ 𝑧⟨𝑛⟩
𝑙 ⟨𝜖, e1 [e2]⟩ ⇓𝑙𝑣 𝑙𝑣 [𝑧]

E-LIdx

Figure 14. Helper judgments for statement evaluation.

is a main of the control: when a control is applied this is

the statement that is executed. Parsers specify a start state,

as well as a list of user-defined states. The list of states are

labeled by a natural number, and each statement is expected

to conclude with a transition statement. A P4Cub program

is a list of declarations td.
Figure 13 provides the auxiliary judgments used in typ-

ing of statements, shown in Figure 6. The parser transition

typing judgment determines if the transition pt in a parser

with 𝑛 number of states is valid under the environment Γ.
The pattern typing judgment states that the pattern pat has
the type 𝜏 . The helper function valid_state 𝑛 𝑙 determines if

the state 𝑙 is valid or not given the total states 𝑛 of a parser.



CPP ’23, January 16–17, 2023, Boston, MA, USA R. Peterson, E. Campbell, J. Chen, N. Isak, C. Shyu, R. Doenges, P. Ataei, and N. Foster

e ⇑ e, e′

𝜏 𝑛 ⇑ [], 𝜏 𝑛
L-Variable

err 𝑥 ⇑ [], err 𝑥
L-Error

𝑏 ⇑ [], 𝑏
L-Bool

e ⇑ e, e′

e.𝑛 ⇑ e, e′.𝑛
L-Mem

𝑧⟨𝑛⟩ ⇑ [𝑧⟨𝑛⟩], bit⟨𝑛⟩ 0
L-Bit

𝑧⟨𝑝⟩ ⇑ [𝑧⟨𝑝⟩], int⟨𝑝⟩ 0
L-Int

e ⇑ e, e′

e[𝑝1 : 𝑝2] ⇑ e[𝑝1 : 𝑝2] :: e, (bit⟨𝑝1 − 𝑝2 + 1⟩) 0
L-Slice

e ⇑ e, e′

(𝜏) e ⇑ (𝜏) e :: e, 𝜏 0
L-Cst

e ⇑ e, e′ [] ⊢ e : 𝜏

⊖ e ⇑ ⊖ e :: e, 𝜏 0
L-Un

e ⇑ e1, e′1 e ⇑ e2, e′2
[] ⊢ e1 ⊕ e2 : 𝜏 ↑0|e1 | e2 ++ e1 = e

↑0|e2 | e
′
1
⊕ ↑ |e2 ||e1 | e

′
2
= e′

e1 ⊕ e2 ⇑ e′ :: e, 𝜏 0
L-Bin

e ⇑ e1, e′1 e ⇑ e2, e′2

e1 [e2] ⇑ ↑0|e1 | e2 ++ e1, ↑0|e2 | e
′
1
[↑ |e2 ||e1 | e

′
2
]
L-Idx

e ⇑ e′, e′′

shift_pairs e′ e′′ = (e′′′, e′′′′) [] ⊢ {e} : 𝜏
{e} ⇑ {e′′′} :: e′′′′, 𝜏 0

L-List

Figure 15. The lifting pass of expressions.

The start, accept, and reject states are valid. Additionally,

in P4Cub, user-defined parser-states are labeled with nat-

ural numbers, thus, a valid reference to such a state must

be less than the parser’s total number of states 𝑛. Finally,

the argument typing judgment determines the type of an

argument.

Figure 14 provides the auxiliary judgments used in evalu-

ating statements, shown in Figure 9. The parser transition

evaluation simply evaluates the parser transition expression.

Note that in P4Cub, as in P4, the actual work of extracting

metadata from headers is done by externs, and is opaque in

our definitions here. The argument evaluation determines

whether to evaluate an argument to a value or a l-value.

eval_decl_list 𝜖 e 𝑣

eval_decl_list 𝜖 [] []
E-DclNil

⟨𝑣 ++ 𝜖, e⟩ ⇓ 𝑣 eval_decl_list 𝜖 e 𝑣

eval_decl_list 𝜖 (e :: e) (𝑣 :: 𝑣)
E-DclCns

Figure 16. Evaluation of lifted list.

This is needed because inter-procedural calls in P4 such as

those to functions and actions have a copy-in and copy-out

semantics. Lastly, some expressions are partially evaluated

to l-values instead of values. The l-value evaluation provides

such rules.

C Lifting Compiler Pass
Figure 15 describes the compiler pass for lifting out com-

plex expressions. Figure 16 describes how to evaluate the

declaration lists.

References
[1] Kinan Dak Albab, Jonathan DiLorenzo, Stefan Heule, Ali Kheradmand,

Steffen Smolka, Konstantin Weitz, Muhammad Timarzi, Jiaqi Gao,

and Minlan Yu. 2022. SwitchV: Automated SDN Switch Validation

with P4 Models. In Proceedings of the ACM SIGCOMM 2022 Conference
(SIGCOMM ’22). Association for Computing Machinery, New York, NY,

USA, 365–379. https://doi.org/10.1145/3544216.3544220
[2] Anoud Alshnakat, Didrik Lundberg, Roberto Guanciale, Mads Dam,

and Karl Palmskog. 2022. HOL4P4: Semantics for a Verified Data

Plane. In Proceedings of the International Workshop on P4 in Europe.
Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3565475.3569081

[3] Andrew W Appel. 2011. Verified software toolchain. In European
Symposium on Programming. Springer, 1–17. https://doi.org/10.1007/
978-3-642-28891-3_2

[4] Andrew W Appel, Lennart Beringer, Qinxiang Cao, and Josiah Dodds.

2016. Verifiable C. https://doi.org/10.1007/s10817-018-9457-5
[5] Subarno Banerjee, Lazaro Clapp, and Manu Sridharan. 2019. Nullaway:

Practical type-based null safety for java. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 740–750.
https://doi.org/10.1145/3338906.3338919

[6] Eric Hayden Campbell, William T Hallahan, Priya Srikumar, Carmelo

Cascone, Jed Liu, Vignesh Ramamurthy, Hossein Hojjat, Ruzica Piskac,

Robert Soulé, and Nate Foster. 2021. Avenir: Managing data plane

diversity with control plane synthesis. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 21). 133–153.

[7] Edsger W Dijkstra. 1975. Guarded commands, nondeterminacy and

formal derivation of programs. Commun. ACM 18, 8 (1975), 453–457.

https://doi.org/10.1145/360933.360975
[8] Ryan Doenges, Mina Tahmasbi Arashloo, Santiago Bautista, Alexander

Chang, Newton Ni, Samwise Parkinson, Rudy Peterson, Alaia Solko-

Breslin, Amanda Xu, and Nate Foster. 2021. Petr4: formal foundations

for p4 data planes. Proceedings of the ACM on Programming Languages
5, POPL (2021). https://doi.org/10.1145/3434322

https://doi.org/10.1145/3544216.3544220
https://doi.org/10.1145/3565475.3569081
https://doi.org/10.1145/3565475.3569081
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1145/3338906.3338919
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/3434322


P4Cub: A Little Language for Big Routers CPP ’23, January 16–17, 2023, Boston, MA, USA

[9] Ryan Doenges, Parisa Ataei, stp59, Nate Foster, Amanda Xu, Rudy

Peterson, Alexander Chang, Natalie Isak, Hyun Kyo Jung, Alaia Solko-

Breslin, Calvin-S, Jed Liu, Nigusu, Pavel V. Dimens, and Xavier Clerc.

2022. verified-network-toolchain/petr4: v0.1.4. https://doi.org/10.5281/
zenodo.7495829

[10] Ryan Doenges, Tobias Kappé, John Sarracino, Nate Foster, and Greg

Morrisett. 2022. Leapfrog: Certified Equivalence for Protocol Parsers.

In Proceedings of the 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation (PLDI 2022).
Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3519939.3523715

[11] Matthias Eichholz, Eric Campbell, Nate Foster, Guido Salvaneschi, and

Mira Mezini. 2019. How to avoid making a billion-dollar mistake:

Type-safe data plane programming with SafeP4. ECOOP (2019). https:
//doi.org/10.48550/ARXIV.1906.07223

[12] Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster,

and Mira Mezini. 2022. Dependently-typed data plane programming.

POPL (2022). https://doi.org/10.1145/3498701
[13] Cormac Flanagan and James B Saxe. 2001. Avoiding exponential explo-

sion: Generating compact verification conditions. In Proceedings of the
28th ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages. 193–205. https://doi.org/10.1145/373243.360220

[14] Lucas Freire, Miguel Neves, Lucas Leal, Kirill Levchenko, Alberto

Schaeffer-Filho, and Marinho Barcellos. 2018. Uncovering bugs in

p4 programs with assertion-based verification. In Proceedings of the
Symposium on SDN Research. 1–7. https://doi.org/10.1145/3185467.
3185499

[15] Bo-Yuan Huang, Hongce Zhang, Pramod Subramanyan, Yakir Vizel,

Aarti Gupta, and Sharad Malik. 2018. Instruction-Level Abstraction

(ILA): A Uniform Specification for System-on-Chip (SoC) Verification.

ACM Trans. Des. Autom. Electron. Syst. 24, 1, Article 10 (dec 2018),

24 pages. https://doi.org/10.1145/3282444
[16] Ali Kheradmand and Grigore Rosu. 2018. P4K: A formal semantics

of P4 and applications. arXiv preprint arXiv:1804.01468 (2018). https:
//doi.org/10.48550/arXiv.1804.01468

[17] Chris Lattner. 2008. LLVM and Clang: Next generation compiler

technology. In The BSD conference, Vol. 5. 1–20.
[18] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-

work for lifelong program analysis & transformation. In International
Symposium on Code Generation and Optimization, 2004. CGO 2004.
IEEE, 75–86. https://dl.acm.org/doi/abs/10.5555/977395.977673

[19] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy

Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-

lache, and Oleksandr Zinenko. 2020. MLIR: A compiler infrastructure

for the end of Moore’s law. arXiv preprint arXiv:2002.11054 (2020).

https://doi.org/10.48550/ARXIV.2002.11054
[20] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer,

Markus Pister, and Christian Ferdinand. 2016. CompCert-a formally

verified optimizing compiler. In ERTS 2016: Embedded Real Time Soft-
ware and Systems, 8th European Congress.

[21] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun

Lee, Robert Soulé, HanWang, Călin Caşcaval, NickMcKeown, andNate

Foster. 2018. P4v: Practical verification for programmable data planes.

In Proceedings of the 2018 Conference of the ACM Special Interest Group
on data communication. 490–503. https://doi.org/10.1145/3230543.
3230582

[22] P4 Language Consortium. 2022. P4 16 language specification. https:
//p4.org/p4-spec/docs/P4-16-v-1.2.3.html

[23] Rudy Peterson, Eric Hayden Campbell, John Chen, Natalie Isak, Calvin

Shyu, Ryan Doenges, Parisa Ataei, Nate Foster, Qinshi Wang, Mengy-

ing Pan, Shengyi Wang, Lennart Beringer, and AndrewW. Appel. 2022.

poulet4. https://doi.org/10.1145/3554345
[24] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negreanu,

and Costin Raiciu. 2018. Debugging P4 programs with Vera. In Proceed-
ings of the 2018 Conference of the ACM Special Interest Group on Data
Communication. 518–532. https://doi.org/10.1145/3230543.3230548

[25] Bingchuan Tian, Jiaqi Gao, Mengqi Liu, Ennan Zhai, Yanqing Chen,

Yu Zhou, Li Dai, Feng Yan, Mengjing Ma, Ming Tang, et al. 2021.

Aquila: a practically usable verification system for production-scale

programmable data planes. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference. 17–32. https://doi.org/10.1145/3452296.3472937

[26] Qinshi Wang, Mengying Pan, Shengyi Wang, Ryan Doenges, Rudy

Peterson, Lennart Beringer, and Andrew W. Appel. 2022. Verifiable

P4 : A Foundational Verifier for Stateful P4 Programs. (Sept. 2022).

Unpublished manuscript; submitted for publication.

[27] Jianzhou Zhao, Santosh Nagarakatte, Milo MK Martin, and Steve

Zdancewic. 2012. Formalizing the LLVM intermediate representa-

tion for verified program transformations. In Proceedings of the 39th
annual ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages. 427–440. https://doi.org/10.1145/2103621.2103709

Received 2022-09-21; accepted 2022-11-21

https://doi.org/10.5281/zenodo.7495829
https://doi.org/10.5281/zenodo.7495829
https://doi.org/10.1145/3519939.3523715
https://doi.org/10.1145/3519939.3523715
https://doi.org/10.48550/ARXIV.1906.07223
https://doi.org/10.48550/ARXIV.1906.07223
https://doi.org/10.1145/3498701
https://doi.org/10.1145/373243.360220
https://doi.org/10.1145/3185467.3185499
https://doi.org/10.1145/3185467.3185499
https://doi.org/10.1145/3282444
https://doi.org/10.48550/arXiv.1804.01468
https://doi.org/10.48550/arXiv.1804.01468
https://dl.acm.org/doi/abs/10.5555/977395.977673
https://doi.org/10.48550/ARXIV.2002.11054
https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/3230543.3230582
https://p4.org/p4-spec/docs/P4-16-v-1.2.3.html
https://p4.org/p4-spec/docs/P4-16-v-1.2.3.html
https://doi.org/10.1145/3554345
https://doi.org/10.1145/3230543.3230548
https://doi.org/10.1145/3452296.3472937
https://doi.org/10.1145/2103621.2103709

	Abstract
	1 Introduction
	2 Overview
	3 Syntax
	4 Static and Dynamic Semantics
	4.1 Type System
	4.2 Evaluation

	5 Implementation
	6 Case Studies
	6.1 Metatheory
	6.2 Compiler Passes
	6.3 A Program Verifier

	7 Related Work
	8 Conclusion and Future Work
	9 Data-Availability Statement
	Acknowledgments
	A Supporting Judgments
	B Declaration Syntax
	C Lifting Compiler Pass
	References

