
A Program Logic for Tree Borrows

Master Thesis

Rudy Peterson

September 19, 2025

Advisors: Johannes Hostert, Prof. Ralf Jung

Department of Computer Science, ETH Zürich

Acknowledgments

I thank Johannes Hostert and Ralf Jung for supervising my thesis. In particu-
lar, I thank them for helping me design the logical heap. I also thank them
for helping me write this thesis, and for providing me with the LATEX sources
for the Tree Borrows diagrams.

I thank the Iris and Rocq-std++ maintainers for upstreaming my merge
requests that resulted from my work, and I thank the Iris community for
responding to my questions in the Iris chat room. I also thank them for
providing me with the LATEX sources for the Iris and HeapLang style files.

I thank my friends at ETH Zürich, without whom I would not have had the
fortitude and strength to complete this master’s program. I thank Aaron,
Ahmet, Albert, Andreas, Andrew, Andrij, Anna, Calvin, Caspar, Chris× 2,
Daniel× 2, Elena, Elias, Federico, Felix, Giorgos, Hairong, Jimmy, Konstanti-
nos, Kwok Wai, Lars, Laurenz, Luca× 2, Lucas, Maciej, Markus, Martin,
Matej, Matteo, Max, Michael, Moussab, Nathan, Nicola, Paul, Philippe, Re-
becca, Santos, Seungchan, Sven, Teymour, Thomas, Victor, Yuchen, and
Yuejiang.

I thank my great aunt, Judith Hollenweger Haskell, and her adopted Ukra-
nian family, for their kindness, support, and boundless hospitality.

I thank my parents, Natalie and Lee Peterson, and my sibling Sacha Peterson,
for their bottomless love and support. I am so grateful for my family, and
especially for visiting me during my studies at ETH Zürich, giving me the
love and strength to press on.

Finally, I thank my cats, Leo and Pico, for being so dang cute, sweet, and
loving. I missed them so much during my studies far away in Zürich. Leo
and Pico’s antics and cuteness gave me so much strength and joy. I am
devastated that I lost my little buddy Pico. Pico, knowing you were around,
being playful, cute, and snuggly with your brother Leo gave me so much
happiness, and I hope we provided you with a loving home and family.

i

Abstract

The Rust programming language, via its ownership model and borrow
checker, provides strong memory safety guarantees for references and
aliasing. Compilers take advantage of the guarantees of the borrow
checker in order to justify powerful optimizations. Yet, the borrow
checker is unable to reason about unsafe code and raw pointers therein,
which may bypass Rust’s type system and violate its safety guarantees,
complicating compiler optimizations. Tree Borrows is a new formal
aliasing model for Rust, which precisely articulates the contract un-
safe Rust should abide by. Tree Borrows provides compilers with the
justification to perform optimizations.

There are many program logics for Rust, but very few consider the alias-
ing model. This limitation of these program logics precludes one from
safely composing safety and correctness proofs in the program logic
with semantics-preserving proofs for the compiler. Thus we present a
program logic for Tree Borrows capable of modularly reasoning about
ghost trees in a higher order and concurrent setting under block-based
memory. Our novel ghost tree construction unlocks powerful reasoning
principles, including pointwise permission weakening, subtree deletion,
and lateral separation. Our extensive Lilac Tree library buttresses our
program logic, enabling these reasoning principles.

ii

Contents

Contents iii

1 Introduction 1
1.1 Our Contribution . 3
1.2 Thesis Outline . 4
1.3 Conventions and Notation . 4

2 Background 7
2.1 Rust and Tree Borrows . 7

2.1.1 Rust References . 7
2.1.2 Tree Borrows . 10

2.2 Iris . 14
2.2.1 Ghost Maps . 14
2.2.2 The State Interpretation and Points-tos 15
2.2.3 Primitive Laws . 16
2.2.4 Lambda Rust and Block-based Memory 18

3 Tree Library 19
3.1 Core Definitions . 19
3.2 Relations on Trees . 22
3.3 Monadic Transformations . 23
3.4 Tree Union . 23

4 The Program Logic Interface 24
4.1 A Core Calculus with Tree Borrows 24

4.1.1 Syntax . 26
4.1.2 Operational Semantics 28

4.2 Program Logic . 34
4.2.1 A Grand Tour . 34
4.2.2 Hoare Logic Laws for Tree Borrows 34

iii

Contents

4.2.3 Permission Weakening Example 40
4.2.4 Concurrent Block Separation 44

5 Model 49
5.1 Monolithic Ghost Trees . 49
5.2 Pointwise Permission Weakening 51
5.3 Subtree Deletion . 55
5.4 Lateral Ghost Tree Separation 57

5.4.1 Well-formed Ghost Trees 60
5.4.2 Protector Agreement . 64
5.4.3 Final Thoughts and Challenges 66

6 Conclusion 67
6.1 Implementation . 67
6.2 Limitations . 69
6.3 Possible Extensions . 71
6.4 Related Work . 73

Bibliography 76

A Upstreamed Contributions 80

iv

April is the cruellest month, breeding
Lilacs out of the dead land, mixing
Memory and desire, stirring
Dull roots with spring rain.

— T. S. Eliot, The Waste Land

Chapter 1

Introduction

The Rust programming language aims to provide robust memory safety
assurances via its ownership model and borrow checker. These mechanisms
prevent a large swath of memory safety errors at compile time, even in
higher-order and concurrent programs. Rust’s ownership system enforces
that any resource may only have one owner at any time. Furthermore, Rust’s
borrow checker enforces aliasing xor mutability: either there may be multiple
immutable aliases of a reference, or there may be a single mutable reference.
These restrictions prevent accesses to dangling pointers, data races between
concurrent threads, and even iterator invalidation resulting from mutating a
collection while iterating over it.

Compilers would like to use the guarantees of the ownership system and
borrow checker to justify powerful optimizations, such as reordering reads
and writes, inlining reads, etc. However, unsafe Rust provides programs
with the ability to access raw pointers, which programs may exploit to evade
the strict laws of the borrow checker, such as by aliasing a mutable reference
obtained from a raw pointer. unsafe Rust is sometimes necessary, and may
be used to implement safety-encapsulated abstractions such as for slices, Vec,
and HashMap. Unfortunately, the presence of unsafe code may invalidate
compiler optimizations. Furthermore, layers of the Rust compiler already
makes choices about optimizing code in the presence of aliasing without
a formal dynamic semantics, much less a formal aliasing model: a precise
paradigm within the dynamic semantics which defines which pointers may
be used to access memory. In an aliasing model for Rust, we would still like
to enforce the uniqueness of mutable references. For instance, the compiler
may choose to replace a load from a reference by inlining the value, but this
may be unsound if this reference is actually aliased by some other mutable
reference.

Enter Tree Borrows [31], a formal aliasing model for tracking permissions of
and relationships between references, consistent with Rust’s borrow checker.

1

Tree Borrows precisely defines which accesses to references bring about unde-
fined behavior (UB), even for references obtained surreptitiously via unsafe

Rust code and raw pointers. Tree Borrows organizes permissions and refer-
ence derivation in a tree, where an access (read or write) to one node (one
reference) may alter the permissions in all of the other nodes (references),
and Tree Borrows forbids an access if it causes UB. Consequently, adding
Tree Borrows to the dynamic semantics of Rust provides compilers more UB
to exploit in order to justify powerful optimizations: if a source program
already incurs UB, then a compiler should have carte blanche to transform
and optimize the source code arbitrarily. Villani et al. [31] introduces Tree
Borrows to Miri [11], a framework for detecting UB and aliasing violations at
runtime for Rust programs, and provides a mechanized implementation of a
core calculus in Rocq and Simuliris [8] featuring compiler-correctness proofs
for important aliasing optimizations. Lamentably, this additional UB places a
greater burden upon efforts to prove program correctness via separation logic.

Separation logic is a powerful framework to reason about programming
languages that manipulate memory, even concurrently. Higher-order separa-
tion logic frameworks such as Iris [16, 14, 15, 18, 26] allow reasoning about
higher-order functions and closures in the presence of mutable state and
concurrent execution. Iris instances for Rust [13, 6, 7] capture a core calculus
exhibiting the salient stateful, higher-order, concurrent, and aliasing semantics
of unsafe Rust. Adequate Hoare triples for programs in these logics essentially
guarantee that the given program executes safely without UB. However, this prior
work largely ignores any notion of an aliasing model, and thus program proofs
from this prior work may not in general be safely composed with aliasing
optimizations.

In summary, we have Tree Borrows [31], which defines a Rust aliasing
model and justifies compiler optimizations, and we have separation logics
for Rust [13, 6, 7], but we are missing a separation logic for Rust that considers
an expressive and flexible aliasing model such as Tree Borrows.

Integrating an aliasing model such as Tree Borrows into a separation logic is
no trivial task, since placing further restrictions upon accesses to references
introduces further UB into the dynamic semantics. And the more UB in the
dynamic semantics of a programming language, the greater the difficulty
separation logics face when attempting to reason about program behavior.
As programmers and proof engineers, we want to preclude and avoid UB in
our programs.

In order to safely compose foundational separation logic correctness proofs
with meaningfully optimizing compilers for unsafe Rust programs, we must
first resolve a tension between the desiderata of programmers and proof
engineers who prefer to avoid UB, and compiler engineers that benefit from
more UB:

2

1.1. Our Contribution

1. By broadening the scope of behaviors considered UB, compilers attain
more freedom to transform source programs, unlocking more optimiza-
tions while preserving the semantics of the given source program.

2. Additional UB creates more obstacles that impede safety and correct-
ness proofs, since more UB introduces further cases that provers need
to address or rule out. In particular, it is not clear is there is a nice and
modular way to reason about these obstacles.

Tree Borrows [31] addresses item 1, but the prior work does not yet adequately
address item 2. In this thesis, we attempt to close the research gap for item 2.
We incorporate Tree Borrows into the semantics of a core calculus, and lay the
foundations of a modular separation logic capable of assuaging the inherit
complexity of Tree Borrows. We mechanize our separation logic in the Rocq
proof assistant via Iris in order to achieve unassailable mathematical rigor.
We intend this work to be another small step in a larger Rust verification
effort towards reasoning about realistic unsafe programs and providing
guarantees about real-word implementations of Rust’s safe abstractions.

1.1 Our Contribution

We make the following contributions:

• We build an extensive library for Lilac Trees in Rocq, a variant of Rose
Trees enjoying stable insertion and deletion. Our libraries support an
induction principle for trees, reasoning about tree accesses, properties
of pointwise predicates over and relations between trees, monadic
transformations over trees, and operations to merge and partition trees.

• We design a core calculus λTB featuring a simplified Tree Borrows
model and block-based memory. This core calculus features non-
deterministically generated reference tags, courtesy of our Lilac Trees.

• We engineer a program logic in Iris for λTB capable of reasoning about
mutable, concurrent, and higher-order programs with aliasing under
Tree Borrows. Our program logic uses ghost trees, which logically relate
to the borrow trees in the physical state. Our logical state enables the
following reasoning principles for ghost trees:

– Pointwise Permission Weakening: Our ghost trees may over-approximate
physical trees with weaker Tree Borrows permissions. This enables
the reconciliation between ghost trees from different branches in
the program.

– Subtree Deletion: Our ghost trees may be structural prefixes of the
physical trees. This enables logically pruning subtrees from the
proof state, curbing proof state explosion from successive retags.

3

1.2. Thesis Outline

– Lateral/block-wise Tree Separation: We may partition ghost trees
across the heap blocks. This empowers the logic with the ability
to reason about concurrent accesses to different locations within
the same block. Furthermore, our system is capable of logically
re-combining independently retagged partitions.

Amidst working towards our higher level goals, we produce substantial
contributions to the Rocq-std++ and Iris libraries. Our efforts lead to 14
accepted and upstreamed merge requests across Iris repositories, which now
feature infrastructure originating from our utility layer.

1.2 Thesis Outline

We structure this thesis as follows:

• Chapter 2 (Background): We summarize some basics of aliasing in
Rust and describe Tree Borrows. Furthermore, we provide an outline
for how to instantiate Iris with a custom state interpretation (SI) using
ghost resources for finite maps.

• Chapter 3 (Tree Library): We introduce our Rocq library for Lilac Trees,
a custom tree data structure. We cover basic operations, and illustrate
the key properties of Lilac Trees.

• Chapter 4 (Program Logic Interface): We detail the syntax and seman-
tics of our core calculus λTB. Then we establish the primitive Hoare
logic and points-to laws, and demonstrate how they achieve the core
reasoning principles with example λTB programs.

• Chapter 5 (Model): We dive into the logical state underlying the primi-
tive laws, points-to laws, and reasoning principles of our program logic.
We begin with a relatively basic state interpretation, and progressively
enhance our proof machinery and refine the logical heap in order to
support increasingly more complex reasoning principles.

• Chapter 6 (Conclusion): We briefly recap our contributions, provide an
overview of the implementation, summarize limitations of our develop-
ment, and discuss directions for future work and possible extensions to
the logic and possible reasoning principles.

1.3 Conventions and Notation

Many operations, such as tree access, are monadic, and in order to properly
chain these operations together, we require monadic bind≫=. We utilize the
≫= notation in chapter 3, where the explicit monadic notation best illustrates
the nature of the tree library. In chapter 4 and chapter 5, we drop this notation

4

1.3. Conventions and Notation

where it would obscure the more salient ideas concerning the design of the
logic. This is especially true of access, which is a monadic operation in Rocq.
We decline to notate≫= and explicit Some and None constructors for option
types, and instead implicitly coerce successful results to Some, and write ⊥
instead of None when the operation fails. Our convention closely mirrors
those adopted by other Iris-related works.

In chapter 3, we employ explicit, Rocq-std++-style notation for lookup of
the form t !! ks, but in later sections we use more traditional finite map
application t(ks) to avoid syntactic clutter. We utilize the same lookup and
insert notation for both trees and finite maps. This is consistent with our Rocq
development, where both trees and finite maps use instances of Rocq-std++
typeclasses for insert and lookup, so the notations also match in Rocq.

To denote points-to assertions that own a resource at a single offset within
a block, we write ℓ 7→ x, and to denote points-tos that hold resources for
multiple offsets in a block, we write ℓ 7→∗ x. Furthermore, we notate a
resource for multiple offsets with bold font x, similar to vector notation in
Physics. If an individual value repeats across offsets, we write x⃗. We employ
these conventions for both values (lists of values) and trees (logical trees
spanning multiple offsets in a block at every node).

In the sections exhibiting (section 4.2.2) and explaining (section 5.2, sec-
tion 5.3) the weakening relation x1 ⪯ x2, we overload the notation x1 ⪯ x2,
which at the base level relates permissions and location states, which we then
lift pointwise over nodes, and then we lift pointwise over trees. We further
overload this notation for the weakening relation between a ghost tree and a
physical tree, as well as between ghost trees. In the more advanced versions
of the model that include more refined relations between nodes, as well as
predicates on right-hand-side-only nodes (section 5.3, section 5.4), we make
the details of these refinements implicit to avoid notational clutter. We use
the same x1 ⪯ x2 notation for the weakening relation for both block-spanning
ghost trees/groves as well as per-location ghost trees. Again, this serves to
reduce notational noise. For precise definitions for weakening, we direct the
curious reader to the Rocq implementation.

In chapter 4 and chapter 5, we lift the Tree Borrows state machine transition
access from individual location states to tree nodes, and then to entire trees.
We perform this lifting for both physical trees and the two flavors of ghost
trees. We also use access to denote both the access of a single offset z and a
set of offsets X.

We refer to a root-only tree Tree(x, ∅) with no children as a singleton tree.
This reflects the conventions of the Haskell Rose Tree library [4], University
of Oxford [30], and Carnegie Mellon University [1],

We use the term lateral separation to denote partitioning trees apart into

5

1.3. Conventions and Notation

disjoint sets of offsets of a block. Visually, we consider the data along blocks
to lie “horizontally” with respect to the “vertical”, “downward” growth of
the tree data structure from the root. We intend the term “lateral” to evoke
the “horizontal” or “side-to-side” dimension of our trees, aligned with the
dimension of the blocks.

When describing references and pointers inhabiting some variable x, whether
from a Rust or λTB program, we frequently represent the reference/pointer
assigned to the variable with the variable itself. For instance, we often write
“the permissions of x” rather than “the permissions of the reference/pointer
assigned to x”. This metonymy conveys the salient meaning and avoids
distracting pedantry.

6

Chapter 2

Background

2.1 Rust and Tree Borrows

We begin by outlining the Rust features relevant to Tree Borrows, and then
provide a brief introduction to Tree Borrows itself.

2.1.1 Rust References

Rust is a systems programming language renown for its ownership semantics,
which ensure that only one part of a program may possess full access to
or own some resource at a time. In addition to read and write access, full
ownership grants the ability to deallocate the memory which harbors that
resource. Rust’s ownership model enables programmers to statically rule out
many classes of memory errors that incur undefined behavior UB, such as “use
after free” accesses to dangling pointers.

Full ownership is unnecessary for many operations and procedures that need
only read or write. For this reason, Rust allows programs to derive references
or borrow a pointer to a resource. Rust supports immutable, shared references
&T, and mutable, exclusive references &mut T. Rust’s borrow checker statically
enforces that there is at most one mutable reference to some resource at any
given “time”. Since the borrow checker surveys the program at compile
time, it approximates the interval of execution for which a reference is ac-
tive with a “span of code” termed lifetime. The Rust compiler determines a
reference’s lifetime by analyzing the encompassing program’s control-flow
graph. The borrow checker throws a compilation error when it encounters at
least two references (of which one or more is mutable) to the same resource
with overlapping lifetimes. The Rust community refers to these regulations
as the aliasing xor mutability doctrine. The borrow checker may end a ref-
erence’s lifetime upon the derivation of a new reference with conflicting
permissions. Consequently, in safe code, the borrow checker prevents data

7

2.1. Rust and Tree Borrows

races, where multiple pointers access the same location concurrently but not
synchronously.

Example 11 fn plus(x: &mut i32, y: i32) {

2 *x += y;

3 }

4
5 fn baz() {

6 let mut root: i32 = 0;

7 let r = &mut root;

8 plus(r, 66);

9 *r

10 }

Rust also permits deriving references from existing references, dubbed re-
borrowing. This mechanism allows programs to derive a new, child mutable
reference from an existing, parent mutable reference. This may appear to
violate the “aliasing xor mutability” doctrine, but the borrow checker allows
reborrows. Critically, the borrow checker constrains reborrows by requiring
the parent reference to outlive1 the child reborrow. Consider example 1. The
borrow checker accepts the mutable reborrow for x from r, and x’s lifetime
ends upon the conclusion of plus.

However, the borrow checker only rules out improper uses of references in
safe Rust. In unsafe Rust code, one may perform accesses directly on raw
pointers.

Example 21 use std::slice;

2
3 fn split_at_mut(values: &mut [i32], mid: usize)

4 -> (&mut [i32], &mut [i32]) {

5 let len = values.len();

6 let ptr = values.as_mut_ptr();

7
8 assert!(mid <= len);

9
10 unsafe {

11 (

12 slice::from_raw_parts_mut(ptr, mid),

13 slice::from_raw_parts_mut(ptr.add(mid), len - mid),

14)

15 }

16 }

In a perfect world, one could blissfully eschew unsafe Rust, and program-
mers need only trust the borrow checker. In reality, the cold hard truth is
that unsafe Rust is a vital escape hatch when the restrictions of the borrow

1“In peace, sons bury their fathers. In war, fathers bury their sons”, Herodotus.

8

2.1. Rust and Tree Borrows

checker become too cumbersome or even impossible to satisfy. Many mod-
ules in the Rust standard library provide client code with a safe abstraction
atop unsafe implementations, especially for data structures, such as Vec and
HashMap. For instance, consider Rust slices [T], dynamically-sized contiguous
sequences of data in memory. Also consider split_at_mut [28], which we
show in example 2, which partitions a mutable reference to a slice into two
new mutable references with non-overlapping ranges. It is necessary to resort
to unsafe in order to split up a reference to a slice of type &mut [T] into new
references, even for disjoint ranges of the slice. This is because the borrow
checker does not possess enough information at compile time to determine
that the new references indeed refer to non-overlapping memory. Thus one
may cast to and from raw pointers to avoid potentially spurious errors from
the borrow checker.

Example 31 fn write_both(x : &mut i32, y : &mut i32) -> i32 {

2 *x = 13;

3 *y = 20;

4 *x // Optimization idea: return 13

5 }

1 fn adversary() -> i32 {

2 let mut x = 42;

3 let ptr = &mut x as *mut i32;

4 let val = unsafe {

5 write_both(&mut *ptr, &mut *ptr)

6 };

7 val

8 }

Compilers would like to take advantage of the assurances of the borrow
checker to optimize source code. Consider example 3, from Villani et al. [31].
The “aliasing xor mutability” doctrine should entail that x and y represent
disjoint locations in memory. Therefore, the write to y should leave x’s
location unchanged. The compiler may deduce that replacing the final read
*x with 13 should be sound.

But raw pointers may alias references from safe code, potentially under-
mining the assurances of the borrow checker. The function adversary from
example 3 invokes write_both. Recall that the inlining optimization for
example 3 relies upon the disjointness of the parameter mutable references.
Woefully, an adversarial client such as adversary may utilize raw pointers in
an unsafe block to circumvent the borrow checker, and violate its assurances.
In a sane invocation, write_both would return 13. Nevertheless, adversary
passes the same pointer into write_both for each argument, causing both
functions to return 20. This appears to render the inlining transformation
unsound.

Because Rust’s type system does not check memory safety of raw pointers in

9

2.1. Rust and Tree Borrows

unsafe blocks, the programmer must manually check that their implementa-
tion respects some aliasing model. We desire an aliasing model that respects
the intuition of programmers and compiler engineers alike. Tree Borrows
intends to be this precise, formal contract enforcing proper aliasing decorum.

2.1.2 Tree Borrows

In this section, we provide a crash course introduction for Tree Borrows [31],
omitting features out of scope for this thesis. Tree Borrows is a formal aliasing
model for Rust, meant to capture the intuition programmers and compiler
engineers apply to unsafe Rust. The core conceptual thrust of Tree Borrows
relies upon the observation that a natural tree structure emerges from the
derivation of references in a Rust program.

Example 41 fn main () {

2 let mut mum = 0;

3 let boy = &mut mum;

4 let girl = &mut mum;

5 let grandson = &*girl;

6 *girl = 99;

7 }

mum

boy girl

grandson

Consider example 4. Starting in main, we first allocate memory for mum. We
then derive a mutable reference boy from mum, and immediately after we
derive another mutable reference girl, also from mum. Then we derive a
shared reference grandson from girl, i.e. we immutably reborrow from
girl. As depicted in example 4, we may naturally organize the derivation of
these references into a tree.

mum:
Unique

boy:
Reserved

girl:
Reserved

grandson:
Frozen

(a) The permissions at every node in
the tree before the final write to girl.

↓W mum:
Unique

↑W boy:
Disabled

↓W girl:
Unique

↑W grandson:
Disabled

(b) A direct write to girl results in local write
accesses (↓W) to girl and mum, and foreign
write accesses (↑W) to boy and grandson.

Figure 2.1: Visualization of write accesses to the borrow tree spurred by *girl = 99 from
example 4 at the very end of main.

10

2.1. Rust and Tree Borrows

Tree Borrows tracks how accesses to one reference in the tree modify permis-
sions to other references in the tree. For instance, consider the final write
to girl at the end of example 4. We illustrate the transitions of the Tree
Borrows permissions for this access in fig. 2.1. Prior to the final write, mum2

has permission Unique, signifying both read and write permissions. The
references boy and girl both possess permission Reserved, indicating that
they each have both read and write permissions, but that they have yet to
be activated. The behavior of the Reserved permission reflects the nature
of two-phase borrows3 in Rust, which temporarily permit multiple mutable
borrows with overlapping lifetimes before the first write. As shown in fig. 2.1,
the write access to girl results in a cascade of changes to the permissions
at every node in the borrow tree. Notably, a node’s relative position in the
tree influences how its permission transitions. We distinguish between two
complementary types of access locality.

• Local ↓acc: An access to a node nacc is local with respect to a node ncurr
if ncurr is a parent (reflexive-transitively) of nacc in the borrow tree. As
shown in fig. 2.1, the access to girl is local with respect to mum since
mum is a parent of girl. Furthermore, girl receives a local access since
girl is reflexively a parent of itself.

• Foreign ↑acc: An access to a node nacc is foreign with respect to a node
ncurr if ncurr is a non-reflexive descendant of nacc, or if ncurr is a cousin
to nacc in the borrow tree. As shown in fig. 2.1, the access to girl

is foreign with respect to grandson, since grandson is a child of girl.
Moreover, the access is also foreign with respect to boy, since boy is a
cousin of girl.

Reserved

&mut T

Unique Frozen

&T

Disabled

E
↑W ↑W ↑W

↓W ↑R
↓R,↑R ↓R,↓W ↓R,↑R

↑R,↑W

↓W

↓R,↓W

Figure 2.2: Default/unprotected permission state machine diagram from Villani et al. [31],
featuring the entry point for mutable references marked by &mut T, as well as the entry point
for shared references marked by &T. Reaching E indicates that the program has UB. We label
transitions by the events that cause them: (R)ead or (W)rite, each either ↑(foreign) or ↓(local).

The Tree Borrows state machine for permissions (fig. 2.2 from Villani et al. [31])
2Tree Borrows assigns every root node Unique, and since the root only receives local

accesses it remains Unique from allocation to deallocation.
3The borrow checker only generates a two-phase borrow in special cases, such as for

mutable reborrows in fuction arguments. Tree Borrows does not make these distinctions at
runtime.

11

2.1. Rust and Tree Borrows

illustrates how each variety of access events transitions one permission to
another. An access event is a combination of the access locality (local or
foreign) and the access type (read or write). The root node in a borrow tree
always has Unique permission, since the semantics allocates new singleton
trees as Unique at the root, and, as shown in fig. 2.2, a Unique node remains
Unique under any local access. Since a root node is (reflexive-transitively) a
parent to all other nodes in the tree, and Tree Borrows only grows the tree
downward (corresponding to a reborrow), all access are local with respect to
the root. A newly derived shared reference &T starts with Frozen permission,
which renders local writes UB. In contrast, a newly derived mutable reference
&mut T begins with Reserved permission, reflecting the reservation phase of
two-phase borrows. A mutable reference activates and becomes Unique upon
receiving its first local write.

Any reference4 becomes Disabled upon receiving a foreign write. This runtime
behavior embodies the “aliasing xor mutability” doctrine of the borrow
checker, whereupon the borrow checker ends a mutable reference’s lifetime
when it encounters a new mutable reference to the same location. Or, in the
case of a two-phase reborrow of a mutable reference, the borrow checker
invalidates the other references when one is first written to.

We qualify a reference in Tree Borrows by its position or address in the borrow
tree, which we denote as a tag. A tag uniquely identifies a reference by
providing its corresponding node in the tree. We call deriving a new reference
retagging, since we are inserting a new node into the borrow tree, which
requires a fresh tag. Retags are the runtime analogue to reborrows. Consider
again the program and borrow tree in example 4. When the program derives
references for boy and girl, Tree Borrows retags from the root mum. Similarly,
when the program derives a new reference for grandson, Tree Borrows retags
from girl.

Note that the Tree Borrows behavior for sibling nodes corresponds with the
borrow checker’s “aliasing xor mutability” doctrine. Upon the first write
access to a node in the borrow tree, that directly written-to node becomes
Unique, and all of its siblings receive foreign writes, rendering them Disabled.
Among its sibling nodes, this newly minted Unique node is “unique” in the
sense that it is now the exclusively accessible reference among its siblings.

Unlike the borrow checker, Tree Borrows also tracks the permissions of raw
pointers. Specifically, Tree Borrows reference tags are included within a
pointer’s provenance, additional pointer state other than the plain memory
address. Compilers may exploit Tree Borrows to justify optimizations. We
illustrate this with example 3 from Villani et al. [31]. Recall that the compiler

4A foreign write does not disable a Reserved interior mutable node. This thesis does not
implement interior mutability, ergo we omit an explanation here. Those interested may
consult Villani et al. [31].

12

2.1. Rust and Tree Borrows

may wish to replace the final read access *x in write_both by inlining 13.
Intuitively, this optimization appears to be sound, since both x and y are
mutable references, which the borrow checker should guarantee concern
different memory locations. But also recall function adversary from ex-
ample 3, which demonstrates a means by which an adversarial client may
use raw pointers to provide write_both with aliasing mutable references.
This is where Tree Borrows comes to the rescue. In the original code for
write_both, Tree Borrows disables5 permissions to x upon the write*y = 20

when invoked by adversary, since *y = 20 triggers a foreign write to x.
Consequently, the original program causes UB, which gives the compiler
license to perform the optimization.

Thus, compilers exploit the UB brought about by Tree Borrows to justify
compelling optimizations. Villani et al. [31] demonstrates the utility of
Tree Borrows to compilers performing optimizations via Rocq and Simuliris
proofs of semantics-preserving transformations without incurring new UB.
Moreover, Tree Borrows was introduced into Miri [11] to test UB in real
Rust programs. Tree Borrows incurs less UB than Stacked Borrows (the
predecessor to Tree Borrows discussed below), better respecting programmer
intuition. Thus Tree Borrows has demonstrated its viability to both Rust
programmers and compiler engineers.

Adapting a language’s dynamic semantics to include Tree Borrows com-
plicates the language definition. The goal of this thesis is to overcome the
challenges of reasoning about programs in the presence of Tree Borrows
within the framework of a foundational program logic.

A note about Stacked Borrows Prior to Tree Borrows, researchers devel-
oped Stacked Borrows [12], a similar aliasing model for Rust. Additionally,
Louwrink [20] developed a program logic for Stacked Borrows. However,
Stacked Borrows incurred too much UB, triggering UB in commonly accepted
unsafe programming patterns. For instance, Stacked Borrows does not
properly capture accesses to references obtained by pointer arithmetic across
contiguous memory addresses, whereas Tree Borrows intentionally considers
block-based memory. In particular, Stacked Borrows forbids accessing pointer
offsets outside of the retag range, but Tree Borrows admits such programs.
Moreover, Stacked Borrows does not address two-phase borrows, which allows
the creation of multiple mutable references in a reservation phase before their

5We elide some details for the purposes of this thesis. Tree Borrows also includes the
notion of protected retags, which prompt an alternative state machine. The execution of this
example under Miri with Tree Borrows triggers UB at *x = 13 , since x’s permission at this
point is really conflicted reserved. As discussed later on, our work only partially supports
protectors, and our core calculus does not include protected retags. The salient point is not
where exactly UB occurs but that Tree Borrows precludes improperly interleaved writes from
different references to the same location.

13

2.2. Iris

first write. Lastly, Stacked Borrows is incompatible with some important
compiler optimizations, such as read-read reorderings, a deficit which Tree
Borrows overcomes. This is a consequence of Stacked Borrows organizing
retags into a stack, which is inherently less flexible than a tree. For more
details about Stacked Borrows, see Jung et al. [12] and Villani et al. [31]. For
a discussion relating Louwrink [20] to our work, see section 6.4.

2.2 Iris

Iris [16, 14, 15, 18, 26] is a concurrent, higher-order separation logic frame-
work capable of reasoning about mutable, concurrent, and functional pro-
grams in terms of resource ownership. Critically, Iris is highly flexible since it
allows the construction of custom ghost state, from which one may derive the
appropriate separation logic reasoning principles. Researchers have success-
fully applied Iris to program verification efforts for C [21, 22], OCaml [24, 2, 9],
and of course Rust [13, 6, 7]. Program logics such as these instantiate the
program logic layer of Iris with the ghost resources sound with respect to the
physical state of the dynamic semantics. Specifically, these logics fashion a
suitable state interpretation (SI), which, in particular for languages with heap
semantics, owns an authoritative ghost resource reflecting the physical pro-
gram heap. Here, we outline the fundamentals of ghost resources leveraged
by this thesis.

2.2.1 Ghost Maps

Ghost maps are resources that govern ownership of finite, partial maps K fin−⇀
A. They are described by GhostMap ≜ Auth(K fin−⇀ (DFrac×Ag(A))), where
DFrac is the resource algebra of discardable fractions [32], Ag(A) is the resource
algebra of agreement [14], and Auth(M) is the authoritative monoid [16].

Consider a finite map m : K fin−⇀ A. We may construct a ghost map resource
from m with an authoritative, fully owned element •(ghost map(m)), where
ghost map(m) ≜ (λx : A.(1, ag(x))) <$> m, and partially owned fragment

elements k
dq
↪−→ x ≜ ◦([k←(dq, ag(x))]), where k 7→ x ∈ m for some (poten-

tially discarded) fraction dq. When dq = 1 in k
dq
↪−→ x, we may write this as

k ↪→ x, which entails full ownership of the fragment of m where k 7→ x ∈ m:
we have exclusive ownership of k ↪→ x. Owning k ↪→ x means that the full
1 trumps the ag(x) component of (1, ag(x)), allowing one to update k ↪→ x
to some k ↪→ y by way of GhostMap-Auth-Update if one also owns the
authoritative element •(ghost map(m)).

When q < 1, then the ag(x) component dominates, meaning if we own

k
q1
↪−→ x1 and k

q2
↪−→ x2, then we may conclude that q1 + q2 ≤ 1 and x1 = x2

14

2.2. Iris

GhostMap-Agree

k
q1
↪−→ x1 ∗ k

q2
↪−→ x2 ⊢ q1 + q2 ≤ 1∧ x1 = x2

GhostMap-Persistent

k
�
↪−→ x ⊢ � k

�
↪−→ x

GhostMap-Auth-Valid

•(ghost map(m)) ∗ k
dq
↪−→ x ⊢ m(k) = x

GhostMap-Auth-Insert

k /∈ dom(m)

•(ghost map(m)) ⊢ ˙|⇛•(ghost map(m[k← x])) ∗ k
dq
↪−→ x

GhostMap-Auth-Update

•(ghost map(m)) ∗ k ↪→ x ⊢ ˙|⇛•(ghost map(m[k← y])) ∗ k ↪→ y

GhostMap-Auth-Insert-Big

m1 ⊥ m2

•(ghost map(m1)) ⊢ ˙|⇛•(ghost map(m1 ∪m2)) ∗ ∗
k2 7→x2∈m2

k2 ↪→ x2

GhostMap-Auth-Insert-Persist-Big

m1 ⊥ m2

•(ghost map(m1)) ⊢ ˙|⇛•(ghost map(m1 ∪m2)) ∗ ∗
k2 7→x2∈m2

k2
�
↪−→ x2

Figure 2.3: Iris laws for GhostMap.

via GhostMap-Agree. Ownership of k
�
↪−→ x means that full ownership of

k 7→ x ∈ m has been discarded, and k
�
↪−→ x is persistent, or freely duplicable

(GhostMap-Persistent).

We may insert multiple new (disjoint) elements into a ghost map via GhostMap-
Auth-Insert-Big and GhostMap-Auth-Insert-Persist-Big. Similar lemmas
hold for validity and updates (not shown).

If we own •(ghost map(m))
γ

and ∗k 7→x∈m k
�
↪−→ x

γ

, then we essentially
have an agreement ghost map. In an agreement ghost map, we may allocate
new persistently owned fragments, but we may never change these fragments.

2.2.2 The State Interpretation and Points-tos

The state interpretation (SI) S : State fin−⇀ iProp is a predicate on the physical
program state σ : State within the weakest precondition wp e {P} connective,
which links the ghost program state to the physical program state. We may

15

2.2. Iris

define the SI for a particular instantiation of irisGS gen as

S(σ) ≜ ∃m. •(ghost map(m))
γ ∗m ⪯ σ

where m : K fin−⇀ A is some existentially quantified finite map related to the
physical state σ by some relation m ⪯ σ. S(σ) possesses the authoritative
fragment of this ghost map. Typically, σ is or includes a finite map represent-
ing the heap. For example, in HeapLang, the sample programming language
shipped with Iris, the physical state is essentially6 a heap State ≜ Loc fin−⇀Val.
In general, the domain K of m need not be the domain of σ, and likewise for
the image A. In principle, one is free to define S however is most suitable
to reason about the ghost resources representing the physical state of the
program. The relation m ⪯ σ enables m to be an appropriate approximation
of σ for the separation logic. The approximation or weakening in m ⪯ σ is
implementation-specific, but commonly it allows m to represent a subset of
σ. Depending on the complexity and layers of State, multiple ghost maps
mi, relations mi ⪯i σ, and predicates Si(σ) may constitute the overall state
interpretation. We may accordingly summarize the challenge of this thesis as
how to construct a suitable S for a programming language with Tree Borrows.

The actual ghost resources representing the physical state exposed to users
of the program logic typically manifest in form of points-to fragments. In

HeapLang, the points-to fragment takes the form of ℓ 7→dq v ≜ ℓ
dq
↪−→ v

γ

,
representing ownership of the heap at location ℓ. In general, points-to

connectives possess fragment elements k
dq
↪−→ x, which represent ownership

of some resource x, providing some approximate view of the physical heap.

If we desire a particular ghost resource to be persistent, we may ensure that
any element that may have been possibly allocated into the ghost map is
persistent in the state interpretation for that resource. We may do this by
asserting ownership of every fragment element from the physical map:

Sagree(σ) ≜ ∃magree. •(ghost map(magree))
γagree ∗magree ⪯ σ ∗ ∗

k 7→x∈JσK
k

�
↪−→ x

γagree

where JσK : K fin−⇀ A is some transformation on the physical state to obtain
a ghost map that includes all possible mappings in m, since, as mentioned
earlier, m ⪯ σ (often) entails that m reflects a subset of σ. This method of
defining a Sagree is a “common trick” in Iris instantiations, such as in Sammler
et al. [23].

2.2.3 Primitive Laws

{P} e {v. Q} ≜ � (P −∗ wp e {v. Q})
6We neglect mentioning prophecies, since our core calculus does not support this feature.

16

2.2. Iris

In many Iris instantiations, the primitive laws represent the fundamental
Hoare logic theorems {P} e {Q} invoked by clients of the separation logic.
In these logics, the validity of an Iris Hoare triple {P} e {Q} entails that for
any initial program state σ1 satisfying the precondition P, any final state σ2
reachable by the execution of e satisfies Q and there is no undefined behavior in
e’s execution. The precondition P must ensure the conditions that preclude
undefined behavior (UB), which includes regulating accesses to references.

wp-lift-step

expr to val(e1) = ⊥
∀σ1. S(σ1) ≡−∗⊤ ∅ (red(e1, σ1)) ∗
∀e2 σ2. (e1, σ1 −→h e2, σ2) −∗ |⇛∅ ⊤

(
S(σ2) ∗ wpS e2 {x. Q}

)
⊢ wpS e1 {x. Q}

At the heart of an Iris Hoare triple is the weakest precondition predicate. When
proving {P} e1 {v. Q} for some particular primitive term e1, it often suffices
to apply wp-lift-step. When applying wp-lift-step to a proof goal, one
must then essentially prove both of the following:

• Safety: Under any state σ1, there exists some term e2 and state σ2
that term e1 may step to. In other words, the program e1 should be
reducible.

• Preservation: Under any states σ1 and σ2, and terms e1 and e2 such that
e1 under σ1 steps to e2 and σ2, we may re-establish the state interpreta-
tion with the new state σ2.

m1 σ1

m2 σ2

step

⪯

step
(safety)

⪯
(preservation)

Figure 2.4: Diagram which demonstrates the cases for weakest precondition proofs. The solid
arrows indicate premises, and the dashed arrows indicate the conclusion.

Recall from section 2.2.2 that the SI typically existentially quantifies over some
ghost map m related to the physical state σ by some relation m ⪯ σ. Often,
the cases for the weakest precondition proofs via wp-lift-step include some
assumption that m1 ⪯ σ1 within the state interpretation. For our program
logic, the points-to fragments in the premise of a Hoare law entail that m1

17

2.2. Iris

“steps to” m2. We then need to show safety: that there exists some σ2 such
that σ1 steps to σ2 (showing that there is a reduction); and preservation: that
for any new σ2 obtained from stepping from σ1 that we may show m2 ⪯ σ2
in order to reaffirm the state interpretation.

In our program logic, we may describe proofs using wp-lift-step as a simula-
tion7, which we illustrate in fig. 2.4. In particular, when invoking wp-lift-step

in a context where we only perform a tree access without changing the tree
structure, there are sufficient assumptions to construct m2. We employ this
style of diagram of fig. 2.4 in chapter 5 to explain important intricacies of
weakest precondition proofs in our underlying model. As we expand our
reasoning principles for Tree Borrows, the case analysis for preservation
accumulates greater complexity.

2.2.4 Lambda Rust and Block-based Memory

Lambda Rust (λRust) is a core calculus defined in Rocq intended to reflect
the heap and ownership semantics of full Rust, and developed as part of the
larger RustBelt [13] effort. λRust possesses many important features intended
to scale up to a larger Rust verification effort, such as data race protection in
the heap. RustBelt also provides a lifetime logic in Iris, which features borrow
propositions reflecting the borrow checker. RustBelt uses this lifetime logic to
construct a proof of type safety for λRust via a logical relation. Most of these
aspects do not concern us here.

λRust’s block-based heap is the main salient feature pertinent to this thesis.
Block-based memory a la Compcert [19] is a technique to represent the
physical memory layout in terms of blocks. λRust defines the set of locations
in the heap as Loc ≜ BlockId × Z, where bid : BlockId represents a block
identifier and z : Z is some integer offset into the block. The type of the
physical heap is essentially8 State ≜ Loc fin−⇀Val for this notion of locations
as offsets into blocks. Critically, λRust does not consider an aliasing model,
which is the primary difference between λRust and our work. We provide
further discussion comparing RustBelt and λRust against our own work in
section 6.4.

7We acknowledge that we may be abusing this terminology from state transition systems.
Furthermore, we acknowledge that our notion of “step” is deterministic for laws strictly just
performing accesses over the tree, not modifying its structure.

8We ignore the data race protection mechanisms in λRust, which are irrelevant to our
intents and purposes.

18

Chapter 3

Tree Library

In order to reason about a language with Tree Borrows, we require a robust
library for trees. This chapter provides a birds-eye overview of important
definitions and theorems describing our custom tree library.

3.1 Core Definitions

data Rose a = Node a [Rose a]

Figure 3.1: Typical Rose Tree data structure in Haskell, where nodes house their children in a
list. See the Haskell Rose Tree library [4] for further implementation details.

We require a notion of trees in Rocq compatible with our separation logic
in Iris. In separation logic, one often needs to break up, combine, and per-
form frame-preserving updates to resources. In our case, we need to be able
change and break up the structure of the borrow trees. The notion of a Rose
Tree (fig. 3.1) is well known in functional programming. Rose Trees are a con-
crete representation of general, finite trees where nodes store their children
within a list, and a node may have any finite number of children. Tree Bor-
rows certainly has need of general trees, and the MiniRust [5] implementation
uses Rose Trees.

When performing basic tree operations such as lookups or insertions in trees,
we lookup at or insert into an address. In the case of Rose Trees, the address
space is lists of natural numbers [k0, k1, . . . , kn] : List(N), where a number ki
at a particular index i of the list indicates to lookup the subtree at position ki
of the children list i nodes deep into the tree, after already having traversed
the previous address elements. Every node/subtree has a unique address
from the root, and we assign the root the empty address ϵ.

However, storing children within lists poses issues. Specifically, operations
that modify the structure of the tree such as insertion and deletion are not

19

3.1. Core Definitions

stable for Rose Trees. For instance, inserting or deleting a tree from the middle
of the children list changes the addresses of the subtrees in the rest of the list.
Stability is an important property for our separation logic1, so users need not
contend with address shifts of other nodes in the tree if they need to perform
retags2, or wish to delete subtrees.

Unset Elimination Schemes.

Inductive tree

`{Countable K} {A : Type} : Type :=

(* Nodes. *)

Tree {

(* Data/label at a node. *)

tree_data: A;

(* Immediate subtrees. *)

tree_children: gmap K tree }.

Set Elimination Schemes.

(a) Tree data type in Rocq.

t ∈ Tree(K, A) ≜ Tree(

{
data : A,

children : K fin−⇀ Tree(K, A))

}
)

(b) Tree data type.

Figure 3.2: Lilac Tree data structure.

Enter Lilac Trees (fig. 3.2). In Lilac Trees3, nodes store their children in a finite
map with some domain K. In Rocq (fig. 3.2a), we use the gmap [17] data type
from Rocq-std++ [25]. gmap satisfies important properties for our Lilac Trees.

• We may embed gmap into inductive data structures such as our Lilac
Tree while satisfying Rocq’s strict positivity criteria, and we may define
a suitable induction principle for our trees.

• gmap satisfies extensionality on Leibniz equality with respect to lookups,
which we may extend to our trees.

1This work does not yet support splitting trees into parent/child trees, which would
definitely benefit from stable addresses. However, stability is still an important sanity property
for retagging and ghost subtree deletion.

2The operational semantics of our core calculus generates new keys for tree addresses
non-deterministically, preventing programs from forging provenance in the program logic.

3The name “Lilac Tree” is meant to be a nod to the name “Rose Tree”. Roses nor lilacs
grow in trees, but Rose Trees were allegedly named for the chaotic, recursive, and fractal
growth of roses, and arguably lilac plants grow even more chaotically and fractally. Lilac
Trees allow this more chaotic growth without compromising addresses. Furthermore, the
flower naming scheme relates back to Iris. Most of this thesis will use “tree” instead of “Lilac
Tree”.

20

3.1. Core Definitions

• gmap-based child storage enables address stability under insertion and
deletion, since insertion and deletion in gmap leaves disjoint key-value
pairs unchanged.

This thesis would not have been possible without gmap and its extensive
libraries. The address space of Lilac Trees is List(K) for any countable set K.
We instantiate K with N for our Tree Borrows implementation, but our Lilac
Tree library itself is flexible in principle.

(* * Locate a subtree at address [ks] in [t]. *)

Global Instance tree_lookup `{Countable K} {A : Type} :

Lookup (list K) (tree K A) (tree K A) :=

fix go (ks : list K) (t : tree K A) : option (tree K A) :=

let _ : Lookup _ _ _ := @go in

match ks with

| [] => Some t

| k :: ks => (tree_children t) !! k >>= lookup ks

end.

(a) Tree lookup in Rocq.

(* * Insert subtree [st] at [ks] in [t].

Silently fails if address is not valid. *)

Global Instance tree_insert `{Countable K} {A : Type} :

Insert (list K) (tree K A) (tree K A) :=

fix go (ks : list K) (st t : tree K A) : tree K A :=

let _ : Insert _ _ _ := @go in

match ks with

| [] => st

| [k] => t <| tree_children ::= <[k := st]> |>

| k :: ks => t <| tree_children ::= alter <[ks := st]> k |>

end.

(b) Tree insertion in Rocq.

Figure 3.3: Primary lilac tree operations in Rocq.

t !! (ks1 ++ ks2) = t !! ks1 ≫= (. !! ks2) Decompose lookup.

(∀ks.(t1 !! ks).data = (t2 !! ks).data) ⊢ t1 = t2 Extensionality.

removelast(ks) ∈ t1 ⊢ t1[ks← t2] !! ks = Some(t2) Successful lookup.

ks1 ̸⊑ ks2 ⊢ (t2[ks1← t1] !! ks2).data = (t2 !! ks2).data Stable insertion.

Figure 3.4: Basic tree lookup and insert lemmas, proved in Rocq.

Tree operations such as lookup (fig. 3.3a) and insertion (fig. 3.3b) are defined
by recursion on the address. These operations satisfy useful properties as

21

3.2. Relations on Trees

shown in fig. 3.4, especially stable insertion and deletion.

3.2 Relations on Trees

(* * General relation between data of trees. *)
Definition tree_relation `{Countable K} {A B}

(R : list K → A → B → Prop)

(P : list K → A → Prop) (Q : list K → B → Prop)

(ta : tree K A) (tb : tree K B) : Prop :=

forall ks, option_relation (R ks) (P ks) (Q ks)

(tree_data <$> ta !! ks) (tree_data <$> tb !! ks).

Figure 3.5: General tree relations.

xl

yl

wl pl

zl ∼R,P,Q

xr

zr

ur vr

Figure 3.6: Visualization of general tree relations in fig. 3.5. We use ∼ to denote any general tree
relation parameterized by some R, P, and Q. We denote shared nodes in violet, left-hand-side-only
nodes in blue, and right-hand-side-only nodes in red. Relation R must hold for shared nodes,
predicate P must hold for LHS-only nodes, and predicate Q must hold for RHS-only nodes.

We provide a library for relations between trees parameterized by pointwise
relations between their elements. We give the formal Rocq definition in
fig. 3.5, and a visualization in fig. 3.6. Via our general framework, we
recover some important relations. If both P and Q are ⊥, then we have
a pointwise relation R over trees with identical structure. This is sufficient for
pointwise permission weakening in the ghost tree relation ⪯, which we discuss
in section 5.2. If just P is ⊥, then we have structural inclusion, relating shared
nodes by R, and constraining RHS-only nodes by Q. This is sufficient for
subtree deletion in the ghost tree relation ⪯, which we discuss in section 5.3.
If both P and Q are ⊤, then we have a pointwise relation R over the trees with
otherwise arbitrary structure, or agreement under R. We require this for protector
agreement, which we discuss in section 5.4 and section 5.4.2.

22

3.3. Monadic Transformations

3.3 Monadic Transformations

Functor map and monadic transformations over trees play an important
role in Tree Borrows. Often, these transformations need to be aware of the
current address, such as when computing the locality of a Tree Borrows
access. Since accesses may fail for individual Tree Borrows permissions,
we require monadic operators to lift the monad over the entire tree data
structure.

3.4 Tree Union

xl

yl

wl pl

zl ∪

xr

zr

ur vr

=

xl ∪ xr

yl

wl pl

zl ∪ zr

ur vr

Figure 3.7: Visualization of tree union.

We provide a notion of union between trees. Even though we call it “union”,
this operation actually lifts a union operator on the data of the tree over
the entire tree, and incorporates the structure of both trees. This tree union
is the operator for lateral/blockwise separation of ghost trees. We present a
visualization in fig. 3.7.

23

Chapter 4

The Program Logic Interface

In this chapter, we provide descriptions of the core calculus with tree borrows
λTB, its syntax and structural operational semantics (SOS), and the program
logic laws and user-facing lemmas.

4.1 A Core Calculus with Tree Borrows

Here we describe the syntax and operational semantics of our core calculus
λTB, which intends to capture the core features of Rust related to Tree
Borrows. λTB includes a similar block-based memory model to that of
λRust [13], but without the bells and whistles concerning data races. Overall,
the syntax and semantics is essentially the same as that of HeapLang, but
extended with Tree Borrows and block-based memory. The primary language
features under consideration include:

• Higher-order and first-class functions: Rust’s functional programming
features interact with the aliasing model in nontrivial ways, such as
references captured by closures, or opaque functions that may access
the same memory locations as the calling context. Thus we would like
λTB to capture these interactions to better reflect the realities of Rust
programming.

• Concurrency: An important feature for many languages such as Rust
and of course concurrent separation logics. λTB offers unstructured
concurrency from a fork operator, from which we derive structured
concurrency gadgets such as a parallel operator.

• Block-based heaps: As in λRust, we choose to model the heap in terms
of blocks of allocations. Consequently, during the physical execution,
the semantics summons entire blocks of memory, not merely individual
physical locations. One allocates an entire block in the heap, and
then frees an entire block. Most heap accesses such as loads, stores,

24

4.1. A Core Calculus with Tree Borrows

and atomics only retrieve or change the values at individual locations,
but nonetheless must operate at the granularity of entire blocks from
physical memory. Tree Borrows is explicitly designed with blocks of
contiguous memory in mind, such as how retags generate unaccessed
permissions for parts of the block outside of the explicit retag range.
Every node in the physical borrow trees includes permissions for the
entire block. Furthermore, Tree Borrows assigns protectors at the level
of nodes in borrow trees, not at every location in every node. Therefore,
block-based memory is integral to our core calculus. Our language
employs sequential memory consistency, and we leave any extensions for
relaxed memory to future work. Our heaps are finite maps from block
identifiers to blocks, which include the values and the borrow tree. We
leave models that consider bytes and byte interpretation to future work.

• Retagging: Of course, aliasing is the primary behavior that an aliasing
model such as Tree Borrows means to capture. Thus λTB needs to
have an explicit notion of deriving new references (retagging). In a
language with Tree Borrows, this entails adding a new node in the
physical borrow tree with permissions for the entire block, even for
locations outside of the explicit retag range. We require all retags to be
syntactically explicit operations. In Tree Borrows [31], implicit retags
for method and function application perform protected retags, where
the new node is assigned a protector. Our core calculus only offers
unprotected retags, and we leave protected1 retags to future work.
Furthermore, in Rust and Villani et al. [31]2 , the retag range may be
determined at runtime, by arithmetic operations or opaque functions
for instance. However, our core calculus mandates statically-known
retag ranges, and dynamic sizes are left to future work.

It is with these core features in mind that we endeavor to capture aliasing
under Tree Borrows in our core calculus and program logic. We leave to
future work other Rust features that more tangentially interact with Tree
Borrows such as parametric polymorphism, traits, more realistic memory
models, more expressive algebraic data types, etc.

25

4.1. A Core Calculus with Tree Borrows

main(()) =let mum = ref(0) in
let boy = Retag(mum, mut) in
let girl = Retag(mum, mut) in
let grandson = Retag(girl, shared) in
girl← 99;
Free(girl)

Figure 4.1: Simple program from example 4 in λTB.

4.1.1 Syntax

We introduce our basic syntax by comparison in fig. 4.1, a λTB version of
the Rust program from example 4. The syntax of λTB is reminiscent of
HeapLang’s, but with explicit reference derivations via RetagN.

We outline the syntax of λTB in fig. 4.2. Readers familiar with HeapLang will
notice striking similarities. We support most features of HeapLang3, such as
basic lambda calculus terms (variables, functions, and function application)
extended with language-primitive4 recursive functions, unary and binary
operators, basic product and sum data structures, a fork operator, and of
course operations for reading from, writing to, allocating to, and freeing
from the heap. Furthermore, we have an explicit RetagN operator to derive a
new reference5 from an existing location in memory. In RetagN(e, n, rk), one
provides a term e that evaluates to an existing reference, a statically-known
retag size n, and a reference kind rk. As shown in fig. 4.2, a reference kind may
indicate that the new reference is either mutable or shared/aliased/read-only.

1While we limit our core calculus and client-facing program logic to unprotected retags,
our state machine and underlying ghost state for the program logic indeed feature protectors,
as illustrated in section 5.2. As further described, there is still much work to be done to fully
adopt protectors, but we have already laid a significant foundation.

2Villani et al. [31] includes both modifications to Miri itself with Tree Borrows, as well
as a Rocq implementation and core calculus of its own for Simuliris. While the Miri Tree
Borrows implementation supports dynamically-sized retags, their Rocq implementation also
only supports statically-known retag sizes.

3HeapLang also has a notion of prophecies that we choose not to support for λTB.
4Here we mean to say that recursive functions are an explicit, primitive feature of the

language, not that we only support primitive recursion in the computability theory sense.
5We also considered “pointer” instead of “reference”, and perhaps “pointer” would better

capture the intended meaning here, since this construct has a location in memory (a block
identifier and offset) as well as provenance, additional state attached to the pointer, more than
just the memory address. In our case, the provenance is the tag indicating the address in the
borrow tree, which uniquely determines the reference. In order to appease proponents of
“pointer” and “reference”, we use the metavariable ρ for references in λTB, since Greek “ρ” is
calligraphically similar to English “p”.

26

4.1. A Core Calculus with Tree Borrows

τ ∈ Tags ≜ List(N)

ℓ ∈ Loc ≜

{
block id : BlockId,

offset : Z

}

ρ ∈ Ref ≜


block id : BlockId,

offset : Z,
tag : Tags


rk ∈ RefKind ::= mut | shared

v, w ∈Val ::= z | true | false | () | ρ | (z ∈ Z, n ∈N)

recv f (x) = e | (v, w)v | inlv(v) | inrv(v)
e ∈ Expr ::= v | x | rece f (x) = e | e1(e2) |

⊚1 e | e1 ⊚2 e2 | if e then e1 else e2 |
(e1, e2)e | fst(e) | snd(e) | inle(e) | inre(e) |
match e with inl⇒ e1 | inr⇒ e2 end |
AllocN(e1, e2) | Free(e) | ! e | e1 ← e2 |
CmpXchg(e1, e2, e3) | Xchg(e1, e2) | FAA(e1, e2) |
RetagN(e, n, rk) | fork {e}

⊚1 ::= − | . . . (list incomplete)
⊚2 ::= + | − | +L | = | . . . (list incomplete)

Figure 4.2: Syntax of λTB.

We intend this to mirror real Rust syntax, where references are shared by
default, and the mut keyword informs the compiler that this is a mutable
reference.

As depicted in fig. 4.2, a reference ρ is composed of a block identifier, an
integer block offset (to allow pointer arithmetic), and a tag. A tag τ indicates
the address in the borrow tree that uniquely determines the identity of the
reference for some location in memory. As illustrated in fig. 4.2, a location
in memory ℓ possesses a block identifier and an integer block offset just
like a reference, but does not specify any particular reference with a tag.
Unlike HeapLang and λRust, locations are not included in the grammar of the
language terms nor values themselves. Only references appear in the concrete
syntax. This captures the intended behavior of Tree Borrows, where even raw
pointers are not exempt from the restrictions of the aliasing model. A pointer
in Rust under Tree Borrows possesses some provenance [29], which provides
its tree address at runtime. Of course, explicit reference and pointer values
with provenance do not occur in source Rust programs. As in many core-

27

4.1. A Core Calculus with Tree Borrows

calculi for stateful languages such as HeapLang itself, we need the explicit
references in the language syntax since we employ a small-step operational
semantics. We discuss the generation of reference tags later on.

4.1.2 Operational Semantics

K ∈ Ctx ::= • | Ctx>
K> ∈ Ctx> ::= e(K) | K(v) |

⊚1 K | e ⊚2 K | K ⊚2 v | if K then e1 else e2 |
(e, K) | (K, v) | fst(K) | snd(K) |
inl(K) | inr(K) | match K with inl⇒ e1 | inr⇒ e2 end |
AllocN(e, K) | AllocN(K, v) | Free(K) | ! K | e← K | K ← v |
CmpXchg(e1, e2, K) | CmpXchg(e1, K, v3) | CmpXchg(K, v2, v3) |
Xchg(e, K) | Xchg(K, v) | FAA(e, K) | FAA(K, v) |
RetagN(K, n, rk)

Figure 4.3: Evaluation contexts for λTB.

In this section, we outline the structural small-step operational semantics
(SOS) of λTB. We employ a contextual semantics, which generally fits well
with irisGS gen, Iris’s typeclass interface to instantiate the program logic and
weakest precondition libraries. We present the evaluation contexts in fig. 4.3.
Our evaluation contexts are essentially identical to HeapLang’s, exhibiting a
“right to left”, strict evaluation order. We also add an evaluation context for
RetagN. This enables pointer arithmetic used to determine the starting offset
of the retag range to take place within the RetagN expression itself. Since the
pure reduction semantics of λTB and HeapLang are virtually identical, we
omit them and encourage the reader to view the Iris [27] documentation.

p ∈ Permission ≜ Reserved | Unique | Frozen | Disabled
ls ∈ LocState ≜ B× Permission

prot ∈ Protection ≜ Protected | Unprotected
blk ∈ Block ≜ Vec(Val, n)× Tree(N, Protection×Vec(LocState, n))

σ ∈ State ≜ BlockId fin−⇀ Block?

Figure 4.4: Physical heap and Tree Borrows state machine permissions.

28

4.1. A Core Calculus with Tree Borrows

In fig. 4.4, we illustrate the construction of the physical heap σ ∈ State. Our
heaps are finite maps from block identifiers BlockId to optional physical
blocks Block?, which include both a vector of values in the heap and a physical
tree with a vector of location states at every node. An inhabited optional
block Block? indicates a proper, allocated block. When an optional block
is ⊥, this indicates that the program freed the block from memory. The
optional blocks Block? allow the operational semantics to always assign new
block identifiers, and avoid reusing identifiers associated with previously
deallocated blocks. Each node corresponds to a reference at that node’s
address, and the physical nodes contain the permissions at every location.
Note that this organization for the heap is different from that of λRust [13]. In
λRust, the heap is essentially6 a finite map from locations (block identifiers
and offsets) to values, (BlockId×Z) fin−⇀Val. In contrast, our heap stratifies
the block identifiers and offsets: one first looks up the block with the block
identifier, and then the location within the block with the offset. We choose
to stratify the heap structure in light of following considerations:

• Borrow trees organize nodes at the level of blocks, not individual
locations. Recall that Tree Borrows assigns protector values for the
entire block for a node, not individual locations. Also recall that retags
insert new nodes with permissions for the entire block, not just for
offsets within the retag range. Thus our heap should at the very least
directly map block identifiers to borrow trees.

• By directly mapping block identifiers to blocks, we may pair the array
of values with the borrow tree. As shown in fig. 4.4, there is some
block size n used as the dependent index for a vector of values in the
block, and we supply the same n for each vector of location states at every
node in the borrow tree. Thus we unify the block sizes for both the
value array and the nodes of the borrow tree, exploiting the power of
dependent types to intrinsically maintain the representation invariants
that every node in the physical tree must have the same block size and offsets
and that the nodes in the borrow tree must have identical block sizes and
offsets to the value array.

Now we turn our attention to the actual data within the physical borrow
trees. We do not simply store a permission p ∈ Permission at every offset in
every node, but as already alluded to we store a location state ls ∈ LocState at
every offset in every node. As defined in fig. 4.4, a location state is a product
of a boolean value representing an accessed bit and a Tree Borrows permission.
The accessed bit indicates whether or not its offset in the node it inhabits in
the borrow tree has been locally accessed. As further illustrated later on in
section 5.2, the accessed bit primarily plays a role in the protected permission

6λRust also maps every location to a lock state to reason about race conditions, but this is
not relevant to this work at this time.

29

4.1. A Core Calculus with Tree Borrows

state machine, which when flipped on renders some accesses, especially
foreign writes (↑W), UB instead of Disabled, which prevents other code from
interfering with this location. λTB does not currently support protected
retags, but in order to future proof later work we include protectors7 and
accessed bits in our implementation of the Tree Borrows state machine
and physical heap. Of course, we require the Tree Borrows permissions8

themselves, and λTB supports the unprotected Tree Borrows state machine
as shown in fig. 2.2.

Now we consider some of the main reduction rules for λTB, as detailed in
fig. 4.5. We showcase the reduction laws for heap primitives such as loads
! e, stores e1 ← e2, allocation, deallocation, and retagging. These primitives
comprise the primary interface through which programs interact with Tree
Borrows. We write access(acc, τ, X, t1) = t2 to denote that a borrow tree
t1 is accessed at tag/address τ and offsets X with an access type acc, and
succeeds9 in producing a new borrow tree t2. Metavariable acc denotes
whether we perform a read access R or a write access W. The astute reader
may notice that the reduction rules generally adhere to a similar pattern:

1. We must always begin by looking up the block (a pair of values and a
borrow, tree) in σ identified by some ρ.block id (except of course for
Allocate, which produces a fresh block).

2. We must ensure that the offset ρ.offset is actually within the range of
the block. In other words, the access must be within bounds.

3. We must ensure that the tag ρ.tag is actually an address within the
domain of the borrow tree. In order to access a reference ρ, this
reference must veritably be a valid reference associated with some node
in the borrow tree.

4. We must always perform a successful Tree Borrows access on the tree.
This is a distinguishing trait of a program language semantics featuring
Tree Borrows. We execute the state machine on every offset of every
node in the borrow tree t1, and upon success (no UB) we obtain a
tree with updated permissions t2. The state machine is only executed
for location states within the accessed range of offsets, and the state

7As illustrated later on in chapter 5, protectors play an interesting role in the logical state
for the program logic, and even their partial support incurs nontrivial design considerations.
We hope that this foundation will aid in the complete addition of protectors to a Tree Borrows
program logic.

8Observe that we do not yet support the “Reserved Interior Mutable” permission for interior
mutability. See the conclusion discussing future work.

9A failing access corresponds to transitioning to UB (E) in the Tree Borrows state machine.
Thus in Rocq access is a monadic operation that produces an optional value: Some(t2) upon
success and None for failure/UB. In order to reduce notational clutter, we hide the optional
and monadic operations for access in our presentation.

30

4.1. A Core Calculus with Tree Borrows

“Head” reduction (impure) e1, σ1 −→h e2, σ2

Allocate

σ(bid) = ⊥ 0 < z ρ = (bid, 0, ϵ)

(AllocN(z, v), σ) −→h (ρ, σ
[
bid←(⃗v,Tree(⃗Unique, ∅))

]
)

Free

σ(ρ.block id) = (v, t) ρ.offset = 0
ρ.tag ∈ dom(t) access(W, ρ.tag, {0, . . . , |v| − 1} , t) ̸= ⊥

(Free(ρ), σ) −→h ((), σ[ρ.block id←⊥])

Load

σ(ρ.block id) = (v, t1) 0 ≤ ρ.offset < |v|
ρ.tag ∈ dom(t1) access(R, ρ.tag, ρ.offset, t1) = t2

(! ρ, σ) −→h (v(ρ.offset), σ[ρ.block id←(v, t2)])

Store

σ(ρ.block id) = (v, t1) 0 ≤ ρ.offset < |v|
ρ.tag ∈ dom(t1) access(W, ρ.tag, ρ.offset, t1) = t2

(ρ← w, σ) −→h ((), σ[ρ.block id←(v[ρ.offset←w] , t2)])

Retag

σ(ρ.block id) = (v, t1) 0 ≤ ρ.offset ≤ ρ.offset + n ≤ |v|
ρ.tag ∈ dom(t1) ρ.tag ++ [k] /∈ dom(t1)

access(R, ρ.tag, {ρ.offset, . . . , ρ.offset + n− 1} , t1) = t2
ρ′ = (ρ.block id, ρ.offset, ρ.tag ++ [k])

(RetagN(ρ, n, rk), σ) −→h (ρ
′, σ
[
ρ.block id←(v, t2

[
ρ.tag ++ [k]←Tree(⃗JrkK, ∅)

]
)
]
)

Figure 4.5: Impure reduction rules for λTB. These laws are similar to those of HeapLang, except
that λTB employs block-based memory and of course features Tree Borrows, so these laws must
perform accesses over borrow trees. We omit the reduction rules for fork, which is essentially
identical to that from HeapLang, and for atomics which feature analogous interactions with the
Tree Borrows state machine. Note that since λTB does not support protected retags, we elide
the protector values and accessed bits to avoid clutter, and every protector value is implicitly
Unprotected.

31

4.1. A Core Calculus with Tree Borrows

machine is run for every node in the tree. A node’s address determines
whether or not the accesses for its location states are local or foreign:
the address is local for every node with an address ks that is a prefix
ks ⊑ ρ.tag of the access address, otherwise the access is foreign. A
failing access10 even for a single location state in any node causes the
entire heap operation to fail and renders it UB11. Thus these reduction
laws must ensure that the accesses succeed for every location state within
range for every node.

5. We must update the heap σ with the updated borrow tree t2 (except
for Free, where we deallocate the block entirely). Note that the borrow
tree must be updated even for read accesses, which in general may
change the permissions. This is a crucial difference between our λTB

and HeapLang and even λRust
12. Any access to the physical state

may modify the physical state in a programming language with Tree
Borrows.

Now we will highlight the important, distinguishing components of our main
reduction laws.

• Allocate: We non-deterministically obtain a fresh block identifier
bid /∈ dom(σ), and insert a new block indexed by bid with the given
value v repeated z times, and a singleton borrow tree where every
location state has a true13 accessed bit and permission Unique. This
remains the state of the root of the borrow tree, since every access is
local with respect to the root. AllocN produces a new reference ρ assigned
the fresh block identifier, offset 0, and an empty tag ϵ corresponding

10Locally writing to a Frozen permission, locally accessing a Disabled permission, ...
11Recall that a language definition with an aliasing model such as Tree Borrows incurs more

UB than one without such a model. While more UB naively sounds undesirable, the more UB
in a language the easier it is for compilers to perform optimizations. The trick is to balance
UB so it is powerful enough for compilers, but does not create overwhelming obstacles and
pitfalls for programmers, and in our case program logics. Compiler optimizations are out of
scope for this work, so we refer the curious reader to Villani et al. [31] for further reference.

12The informed reader will likely point out that some read operations in λRust over the
heap do indeed update the physical state, specifically the notion of lock state. The point is that
some read operations in λRust do in fact leave the physical state unchanged, whereas all read
operations in λTB update the physical state. Moreover, as we will illustrate in section 4.2, the
changes in the physical state in λTB always manifest in changes in the logical state in the
program logic, whereas many of the read Hoare laws for λRust entirely hide any changes to
the physical state. While it may be possible for λTB to eventually follow suit and conceal
more of the borrow tree operations, it is unlikely that borrow tree accesses can be concealed
entirely from clients of the program logic.

13A Unique location state must always possess a true accessed bit. A location state that
is both unaccessed and Unique is an invalid state. Despite that this is an invariant of Tree
Borrows, our development treats this more as an emergent property of Tree Borrows rather than
a condition that must be explicitly upheld and inspected. This may play a more important
rule in future work when protectors are fully adopted, since accessed bits primarily influence
the protected state machine shown in fig. 5.3.

32

4.1. A Core Calculus with Tree Borrows

to the root of the tree. As we will further discuss in section 4.2, the
non-deterministic generation of fresh block identifiers becomes demonic
in our program logic.

• Free: In order to free a block of memory, we must successfully perform
a write access to every offset in the block. Note that the tag ρ.tag need
not refer to the root, and may denote an address arbitrarily deep in
the borrow tree. This provides programs some flexibility: even though
the Tree Borrows write access must not fail, one may use any reference
that allows the write access to succeed. At the end, we deallocate14 the
block. Note that in the full Tree Borrows semantics, in order to perform
a deallocation, the borrow tree must not harbor any protected nodes. We do
not yet enforce this constraint since λTB does not yet support protected
retags.

• Load: We perform a read access on the tree for just offset ρ.offset, and
update the heap with the new borrow tree.

• Store: We perform a write access on the tree for just offset ρ.offset,
and update the heap with the new borrow tree, as well as with the new
value.

• Retag: In order to retag and generate a new reference, we must perform
a successful read access on the existing borrow tree for the given range
of offsets. Furthermore, we non-deterministically generate a new key k
such that the address ρ.tag ++ [k] is not already an existing address in
the borrow tree, otherwise the reference would not be new. Recall from
section 3.1 that our Lilac Trees enjoy stable insertion (and deletion). Let
t′1 denote the subtree in t1 at address ρ.tag such that t1(ρ.tag) = t′1.
We only require that k /∈ dom(t′1.children). The stability of Lilac Trees
allows the semantics to non-deterministically produce any such k. If
λTB employed naive Rose Trees, then appending the new node at the
end of the list of children would be the only natural course of action
without further complicating the representation. As with Allocate,
this non-deterministic generation of a fresh k becomes demonic in
the program logic. At the end of the retag operation, we return the
new reference, and insert a new singleton tree at the new address.
In our new singleton tree, we determine the permissions for every
offset by converting the reference kind rk into the appropriate Tree
Borrows permission via the denotation JrkK. Recall the unprotected
state machine diagram, illustrated in fig. 2.2. The entry point for a
new mutable reference is the Reserved state, thus JmutK = Reserved. The
entry point for a new read-only or shared reference is the Frozen state,
thus JsharedK = Frozen.

14In our informal presentation on paper, we do not explicitly show that the heap is assigned
Some(⊥) at the block identifier. See the Rocq implementation for the full details.

33

4.2. Program Logic

The reduction laws for atomics are similar to those illustrated above, just
with some extra steps. In Rocq, we have shown that λTB enjoys some basic
metatheoretical properties, such as reduction preserving closedness (absence
of free variables), and preservation of strictly positive block sizes. It remains
future work to develop a type system or logical relation (such as the lifetime
logic in Jung et al. [13]).

4.2 Program Logic

While λTB may share many similarities with HeapLang, our program logic for
λTB must contend with the borrow trees. Accordingly, our separation logic
for λTB requires a borrow tree points-to connective, which lamentably imposes
additional complexity and onus upon clients of the logic. Nevertheless, our
logic possesses powerful reasoning principles which assuage this burden.

4.2.1 A Grand Tour

We first illustrate the fundamentals of our program logic in fig. 4.6, a Hoare
logic outline for fig. 4.1. Upon allocation we obtain points-tos for the block
size (in this case simply 1), the value, and a singleton tree. Next, we perform
a retag for a new mutable reference, adding a new reserved reference to
the borrow tree for boy. We then perform another mutable retag, adding a
new reserved reference for girl. Next, we perform an immutable retag for
grandson, inserting a new Frozen node into the borrow tree. The ensuing
write to girl disables the permissions for boy and grandson, and activates the
permission for girl. Before deallocating memory, we prune the subtrees for
boy and grandson, since we no longer locally access them. It would have also
sufficed to delete them before the store to girl. Finally, we deallocate the
memory, and relinquish ownership of our value and tree points-tos. Since
block size points-tos are persistent, we may hold on to ours after the free.
Note that in our proof in fig. 4.6, we rely upon concretely computing access to
obtain the next borrow tree. But for specifications with universally quantified,
arbitrary borrow trees, we require more reasoning principles.

4.2.2 Hoare Logic Laws for Tree Borrows

Here we detail the primitive, user facing Hoare logic laws. We require some
points-to fragment associating locations in memory to ghost trees. Recall
from fig. 4.4 that borrow trees in the physical state contain a vector of location
states at every node. These vectors share a common length representing the
block size. In order to assuage lateral separation, we require a more flexible
representation. We show in fig. 4.7 the Lilac Tree instantiations we employ
for the logical trees. We support both block-spanning ghost trees or ghost

34

4.2. Program Logic

{⊤}
let mum = ref(0) in
{bid 7→s 1 ∗ (bid, 0) 7→ 0 ∗ (bid, 0) 7→t Unique}
let boy = Retag(mum, mut) inbid 7→s 1 ∗ (bid, 0) 7→ 0 ∗ (bid, 0) 7→t

Unique

Reserved


let girl = Retag(mum, mut) inbid 7→s 1 ∗ (bid, 0) 7→ 0 ∗ (bid, 0) 7→t

Unique

Reserved Reserved


let grandson = Retag(girl, shared) in

bid 7→s 1 ∗ (bid, 0) 7→ 0 ∗ (bid, 0) 7→t

Unique

Reserved Reserved

Frozen


girl← 99;

bid 7→s 1 ∗ (bid, 0) 7→ 99 ∗ (bid, 0) 7→t

Unique

Disabled Unique

Disabled

bid 7→s 1 ∗ (bid, 0) 7→ 99 ∗ (bid, 0) 7→t

Unique

Unique


Free(girl)
{bid 7→s 1}

Figure 4.6: Hoare logic proof for fig. 4.1.

t ∈ Tree(N, Protection× (N fin−⇀ LocState)) Block-spanning ghost tree/grove.
t ∈ Tree(N, Protection× LocState) Single-location ghost tree.

Figure 4.7: Ghost tree definitions. We denote a block-spanning ghost tree or grove that may
contain multiple offsets as t, and we denote a ghost tree for a single location as t.

35

4.2. Program Logic

groves15 that may possess multiple, continuous offsets in the block, as well as
per-location ghost trees that represent the permissions just for a single location
in memory. The reader concerned with low-level memory semantics and byte
representation may be inclined to point out that such single-location ghost
trees would not be user-friendly in a program logic where every memory
location maps to a single byte, and where memory accesses read from and
write to spans of bytes. This is a fair criticism, but for our core calculus that
simply stores entire arbitrary values at each location, such a per-location tree
is useful when stepping through loads and stores, which in λTB only access a
single location. As we will explain in section 5.4.1, the block-spanning ghost
trees do not require the same set of offsets at every node, but require the set
of offsets to be well-formed fig. 5.10. Thus in future work that tackles more
realistic memory layouts with sized types and accesses to multiple bytes at a
time, it may be prudent to introduce a constrained version of block-spanning
trees that feature the same set of offsets at every node.

In fig. 4.8, we detail some of the primitive16 laws for our logic, and in fig. 4.9,
we exhibit some of main laws our points-tos enjoy. We express laws for
primitives that work with the entire block or multiple-offset spans of the
block (WP-AllocN, WP-Free, WP-RetagN) in terms of block-spanning
ghost groves, whereas we express laws for primitives that access just a single
location (WP-Load, WP-Store) in terms of per-location ghost trees. Laws
expressed in terms of ghost groves need more guarantees about the structure
of the trees. As shown for WP-Free and WP-RetagN, the node inhabiting
the access address/tag must contain all offsets directly read from or written
to. This appears more complicated when compared to the assumptions
needed for Free and Retag, which do not need to explicitly lookup the
node at the access address, and instead just check that the access address is
within the tree’s domain. We need the explicit lookup and offset membership
assumptions for WP-Free and WP-RetagN but not for Free and Retag

because the ghost groves in the primitive laws structure their block fragments
in finite maps, whereas in the reduction rules the dependent index for the
block size constrains every node in each physical tree to have the same, full
set of block offsets at every node. In short, we require these more detailed
assumptions to curb the degrees of freedom inherit to the representation of
ghost groves as shown in fig. 4.7.

However, by virtue of their construction, laws expressed in terms of per-
location trees merely need to confirm that the tag is a valid address in the tree.

15In plain English, a “grove” is a small group of trees. We deem this appellation appropriate
since these block-spanning logical trees entail the ownership of the physical tree for multiple
locations. Furthermore, as will be later explored in section 5.4, these block-spanning trees
are merely an interface for a continuous group of per-location ghost trees, which renders the
epithet “grove” all the more apropos.

16WP-Par is actually a derived law from that of fork {e} (not shown).

36

4.2. Program Logic

Hoare triple {P} e {w.Q}

WP-AllocN
{0 < z}
AllocN(z, v){

w.∃bid.w = (bid, 0, ϵ) ∗ bid 7→s z ∗ (bid, 0) 7→∗ v⃗ ∗ (bid, 0) 7→∗t Tree(⃗Unique, ∅)
}

WP-Free

t(τ) = tτ

dom(tτ.data) = {0, . . . , |v| − 1} access(W, τ, {0, . . . , |v| − 1} , t) ̸= ⊥
{bid 7→s |v| ∗ (bid, 0) 7→∗ v ∗ (bid, 0) 7→∗t t} Free(bid, 0, τ) {().⊤}

WP-Load

τ ∈ dom(t1) access(R, τ, z, t1) = t2{
(bid, z)

dq7−→ v ∗ (bid, z) 7→t t1

}
!(bid, z, τ)

{
v.(bid, z)

dq7−→ v ∗ (bid, z) 7→t t2

}
WP-Store

τ ∈ dom(t1) access(W, τ, z, t1) = t2

{(bid, z) 7→ v ∗ (bid, z) 7→t t1} (bid, z, τ)← w {().(bid, z) 7→ w ∗ (bid, z) 7→t t2}

WP-RetagN
t1(τ) = t′1 z ∈ dom(t′1.data) {z, . . . , z + n− 1} ⊆ dom(t′1.data)

access(R, τ, {z, . . . , z + n− 1} , t1) = t2

{(bid, z) 7→∗t t1}
RetagN((bid, z, τ), n, rk){

w.∃k.w = (bid, z, τ ++ [k]) ∗ τ ++ [k] /∈ dom(t2) ∗ (bid, z) 7→∗t t2

[
τ ++ [k]←Tree(⃗JrkK, ∅)

]}
WP-Par

{P1} e1 {v1. Φ1(v1)} {P2} e2 {v2. Φ2(v2)}
{P1 ∗ P2} e1 || e2 {w. ∃v1v2. w = (v1, v2) ∗Φ1(v1) ∗Φ2(v2)}

Figure 4.8: Primitive, user-facing Hoare logic laws for λTB. Since the operational semantics of
λTB has yet to properly support protected retags, we elide the details of protector values and
accessed bits here. For the full details, see the Rocq artifact.

37

4.2. Program Logic

Block-size-Persistent

bid 7→s n ⊢ � bid 7→s n
Block-size-Positive

bid 7→s n ⊢ 0 < n

Block-size-Agree

bid 7→s n1 ∗ bid 7→s n2 ⊢ n1 = n2

Value-offset-Non-negative

ℓ
dq7−→ v ⊢ 0 ≤ ℓ.offset

Values-Agree

ℓ
q17−→ v ∗ ℓ q27−→ w ⊢ ℓ

q1+q27−−−→ v ∗ 0 < q1 + q2 ≤ 1∧ v = w

Value-offset-within-Block

ℓ.block id = bid

bid 7→s n ∗ ℓ dq7−→ v ⊢ ℓ.offset < n

Append-Values

ℓ
dq7−→∗ v ++ w ⊣⊢ ℓ

dq7−→∗ v ∗ ℓ+L |v|
dq7−→∗ w

Value-Accessor

v(z) = v

ℓ
dq7−→∗ v ⊢ ℓ+L z

dq7−→ v ∗ ∀w, ℓ+L z
dq7−→ w −∗ ℓ dq7−→∗ v[z←w]

Tree-offset-Non-negative

ℓ 7→t t ⊢ 0 ≤ ℓ.offset

Tree-offset-within-Block

ℓ.block id = bid
bid 7→s n ∗ ℓ 7→t t ⊢ ℓ.offset < n

Weaken-Tree

t1 ⪯ t2

ℓ 7→t t2 ⊢ ℓ 7→t t1

Tree-to-Grove

ℓ 7→t t ⊣⊢ ℓ 7→∗t T JtKℓ.offset

Grove-Well-formed

ℓ 7→∗t t ⊢ dom(t.data) = {ℓ.offset, . . . , ℓ.offset + |dom(t.data)| − 1} ∧WF(t)

Combine-Grove

ℓ2 = ℓ1 +L |dom(t1.data)|
ℓ1 7→∗t t1 ∗ ℓ2 7→∗t t2 ⊢ ℓ1 7→∗t t1 ∪ t2

Split-Grove

ℓ2 = ℓ1 +L |dom(t1.data)|
WF(t1) WF(t2) dom(t1.data) ⊥ dom(t2.data)

dom(t1.data) = {ℓ1.offset, . . . , ℓ1.offset + |dom(t1.data)| − 1}
ℓ1 7→∗t t1 ∪ t2 ⊢ ℓ1 7→∗t t1 ∗ ℓ2 7→∗t t2

Tree-Accessor

ℓ 7→∗t t ⊢ (ℓ.block id, i) 7→t t[i] ∗ ∀t, (ℓ.block id, i) 7→t t −∗ ℓ 7→∗t t∪ t \ t[i]

Figure 4.9: User-facing points-to laws for λTB.
38

4.2. Program Logic

Thus WP-Load and WP-Store simply require τ ∈ dom(t). These laws thus
yield less proof overhead than WP-Free and WP-RetagN. Allocating and
retagging from a single location is also a common pattern, thus in Rocq we
provide derived laws for these cases. In Rocq, we also have derived laws for
the ghost grove case for loads and stores to indulge users that would prefer
a single exposed logical representation of the borrow trees. Some potential
users may reject or be overwhelmed by the seemingly competing logical
representations of borrow trees, as shown in fig. 4.7. While featuring only one
logical representation may appear to be more accessible, this would actually
make the logic more burdensome to use. If the interface only had per-location
trees, then retagging would involve a list of these trees, and one would need
to map an insert operation over the list of trees. Furthermore, the assumption
for a successful Tree Borrows access would need to be carried over the list of
trees, rather than computing a single ghost grove for a successful access. If the
interface only featured block-spanning ghost trees, then laws for per-location
operations such as WP-Load and WP-Store would also require the explicit
node lookup and block offset membership assumptions that WP-Free and
WP-RetagN do, which is especially burdensome in the case of a single offset
allocation. In Rocq, we perform proofs in both styles, and the two logical
representations offer flexibility and convenience, and shorter, less tedious proof
scripts. Our model has some limitations concerning conversions between
points-tos for per-location trees and single-location groves, which we discuss
in section 6.2.

Note that WP-AllocN produces and WP-Free requires a points-to assertion
for the block size. As shown in fig. 4.9, this is a persistent resource that may
be combined with those for values and trees to enforce that the offsets owned
by value or tree points-to are within the block. As is true of λRust, the block
size points-to is only needed for WP-Free to enforce ownership of the values
and borrow tree for the entire block.

In WP-AllocN and WP-RetagN, note that new block identifiers and tree
addresses respectively are demonically non-deterministic: the new identifiers
and addresses are not deterministically computed nor generated, and pro-
gram logic users do not supply their new values, but instead receive any possibe
value. This is a consequence of the operational semantics rules Allocate

and Retag, as well as the definition of Iris’s notion of weakest precondi-
tions. This precludes programs under verification from anticipating specific
values of new block identifiers and tree addresses, and their demonically
non-deterministic generation engenders the unforgeability of block identifiers
and tags under the program logic. Forging pointer provenance would both
violate Tree Borrows itself and potentially disrupt the correctness of compiler
optimizations.

Now let us turn our attention to the points-to laws as shown in fig. 4.9.

39

4.2. Program Logic

Laws such as Value-offset-Non-negative and Tree-offset-Non-negative

demonstrate that the offset of the points-to location is at least 0, and laws
such as Value-offset-within-Block and Tree-offset-within-Block use
the block size points-to to enforce that the offset is less than the block size,
constraining the that the offset is within bounds. Block-spanning trees or
groves enjoy a similar in-bounds restriction. Also note that the points-tos for
a single value and a list of values enjoy the typical separation properties such
as Values-Agree, Append-Values, and Value-Accessor that the analogous
constructs enjoy for HeapLang and λRust. These laws allow users to break
apart ownership across the block for values, and with Value-Accessor clients
may extract ownership of a single value within the block, perform updates,
and then snap it back in.

Like values, points-tos for block-spanning trees enjoy similar properties.
First, note that grove ownership via Grove-Well-formed entails that the root
domain of the block-spanning tree is some continuous set of offsets starting
from the points-to’s location’s offset. Laws such as Combine-Grove and
Split-Grove represent adjacent lateral merging and separation of block-spanning
trees/groves. These laws are the tree analogue to Append-Values. However,
laterally splitting trees (Split-Grove) requires more assumptions, especially
the well-formedness of each component via WF(t), which we detail later
in section 5.4.1. Note that unlike values, offsets in groves are global17 , not
relative with respect to the points-to’s location. As with Value-Accessor, we
may borrow out a single-location tree points-to and plug it back into the full
original grove points-to via Tree-Accessor. We may also convert between a
single-location tree t points-to and its injection into a single-location grove
T JtKℓ.offset

via Tree-to-Grove.

The law Weaken-Tree allows one to exchange a points-to with t2 for one
with a logically weaker ghost tree t1. The relation t1 ⪯ t2 entails both pointwise
permission weakening and subtree deletion, which we discuss in more detail
in section 5.2 and section 5.3 respectively.

4.2.3 Permission Weakening Example

Now, we consider an example program where a function accepts a reference
as a parameter, and where we must reconcile the permissions in the final bor-
row resulting from different execution branches. Regard fig. 4.10. Function
foo accepts an opaque, boolean function opaque, which it uses to determine
whether or not to write to a reference assigned to x. While we may allow one
to possess a disjunction of the final tree permissions, we may also logically
weaken our borrow tree from the read branch.

17Global offsets in our block-spanning groves is indeed an limitation of our design. The
issue lies in constructing witnesses for lateral tree separation. See section 6.2 for further
discussion.

40

4.2. Program Logic

foo(opaque, x) = let r = Retag(x, mut) in
if opaque(()) then r← 42
else ! r

(a) Program foo accepts some opaque boolean function and a reference, and writes to or reads
from the reference depending upon the value of the opaque function.

Foo-Spec

{⊤} opaque(()) {b. b = true∨ b = false}
ℓ = (bid, z) τ ∈ dom(t1) access(W, τ, z, t1) = t4

{ℓ 7→ v ∗ ℓ 7→t t1}
foo(opaque, (bid, z, τ))∃k. τ ++ [k] /∈ dom(t4) ∗ (ℓ 7→ 42∨ ℓ 7→ v) ∗ ℓ 7→t

t4

Unique

τ ++ [k]


(b) Specification for foo.

Figure 4.10: Program foo in λTB

We outline our proof for foo in fig. 4.11. Our proof requires the assumptions
that opaque is some boolean function, as well as ownership of the value and
tree accessed and written to. However, if we try to apply WP-RetagN for the
first retag, we immediately realize that merely owning some arbitrary tree
is not enough. Unlike fig. 4.11, our ghost tree is arbitrary, therefore we need
to know that a read access to τ on this arbitrary tree succeeds. In fact, such
an assumption is reasonable to add to our specification in Foo-Spec. Tree
Borrows accesses fail in many cases, so explicitly assuming that the access
succeeds and produces some new tree accurately reflects the operational
semantics, where the tree is updated for every heap reduction rule.

Unfortunately, simply knowing that a read access succeeds is insufficient,
since the “then” case performs a write. Furthermore, foo performs accesses
one node deeper into the tree, not at the given address τ. Since tree addresses
are demonically non-deterministically generated, the precondition of the
specification for foo cannot specifically say that the write access succeeds
at that address since we do not yet know what the new address will be.
We would like some means of writing a specification for foo that is both
reasonably succinct (avoids assuming multiple access results) and sufficiently
powerful to carry us through the proof.

Fortunately, we may resolve this dilemma. Accesses in Tree Borrows enjoy

41

4.2. Program Logic

Context: {⊤} opaque(()) {b. b = true∨ b = false}

{access(W, τ, ℓ.offset, t1) = t4 ∗ ℓ 7→ v ∗ ℓ 7→t t1}{
access(R, τ, ℓ.offset, t1) = t2 ∗ access(W, τ, ℓ.offset, t2) = t4∗
ℓ 7→ v ∗ ℓ 7→t t1

}
let r = Retag(x, mut) in
access(W, τ, ℓ.offset, t2) = t4∗

ℓ 7→ v ∗ ℓ 7→t

t2

Reserved

τ ++ [k]


if opaque(()) thenaccess(W, τ, ℓ.offset, t2) = t4 ∗ ℓ 7→ v ∗ ℓ 7→t

t2

Reserved

τ ++ [k]


r← 42ℓ 7→ 42 ∗ ℓ 7→t

t4

Unique

τ ++ [k]


else

access(R, τ, ℓ.offset, t2) = t3 ∗ access(W, τ, ℓ.offset, t3) = t4∗

ℓ 7→ v ∗ ℓ 7→t

t2

Reserved

τ ++ [k]


! raccess(W, τ, ℓ.offset, t3) = t4 ∗ ℓ 7→ v ∗ ℓ 7→t

t3

Reserved

τ ++ [k]

ℓ 7→ v ∗ ℓ 7→t

t4

Unique

τ ++ [k]


(ℓ 7→ 42∨ ℓ 7→ v) ∗ ℓ 7→t

t4

Unique

τ ++ [k]


Figure 4.11: Hoare logic proof for the conditional program from fig. 4.10.

42

4.2. Program Logic

access(acc, τ, ∅, t) = t Access no offsets.
access(acc, τ, Y, access(acc, τ, X, t)) = access(acc, τ, X ∪Y, t) Decompose offsets.
access(acc, τ, X, access(acc, τ, X, t)) = access(acc, τ, X, t) Idempotency.
access(acc, τ, X, access(R, τ, X, t)) = access(acc, τ, X, t) Insert prior read.
access(R, τ, X, access(acc, τ, X, t)) = access(acc, τ, X, t) Append read.

Disjoint-Offsets

X ⊥ dom(t) WF(t)
access(acc, τ, X, t) = t

Weaken-via-Access

access∗(acc, τ, X, t2) = t1

t1 ⪯ t2

Lateral-Decomposition

dom(t1.data) ⊥ dom(t2.data)
WF(t1) WF(t2) protectors agree for t1 and t2

access(acc, τ, X, t1 ∪ t2) = access(acc, τ, X, t1) ∪ access(acc, τ, X, t2)

Commute-Insertion

τ ++ [k] /∈ dom(t1)
access(acc, τ, X, t1) = t′1 accessτ++[k](acc, τ ++ [k], X, t2) = t′2
access(acc, τ ++ [k], X, t1[τ ++ [k]← t2]) = t′1

[
τ ++ [k]← t′2

]
Figure 4.12: Reasoning principles for Tree Borrows accesses.

many beneficial properties, as shown in fig. 4.12. We may insert18 read
accesses before and after a write access, as well as commute an access with
an insertion via Commute-Insertion

19.

The laws in fig. 4.12 equip us with the reasoning principles needed to specify
and verify foo. Thus, as shown in fig. 4.11, we obtain evidence for a successful
read access and dispatch the retag.

We must consider each case of the conditional program from fig. 4.10. First,
we tackle the “then” case. While we possess knowledge that a write access
is indeed successful, upon closer inspection of WP-Store one finds that we
require knowledge of a successful write for an access to tag τ ++ [k], but we
appear to only know that the write succeeds for tag τ. We apply Commute-
Insertion to deduce that the write will succeed for the new tree resulting
from the previous insertion. Thus we dispatch the write and conclude this
case.

18Idempotency, read insertion and read appendment also hold for single-location ghost
trees.

19The access assumption for the inserted tree t2 has a subscript τ ++ [k] to indicate that we
perform the access at that starting depth. By default, tree accesses start with an empty depth
ϵ signifying that the access is anchored at the root.

43

4.2. Program Logic

Now we consider the “else” case. Once again, we must insert a read ac-
cess before the write, and apply Commute-Insertion to satisfy the access
assumptions for WP-Load. After dispatching the load, we are left with a
discrepancy: our tree after WP-Load does not match the tree expected by the
postcondition. Fortunately, we may logically weaken the permissions of our
borrow tree via Weaken-Tree. We may weaken the Reserved permission to
Unique, and we may weaken t3 to t4, since we know that a write access to
t3 yields t4, and via Weaken-via-Access performing an access weakens permis-
sions. We further elaborate on the nature of pointwise permission weakening in
section 5.2.

4.2.4 Concurrent Block Separation

bongo(y) = let x = RetagN(y, 2, mut) in(
let p = Retag(x, mut) in
p← 42; p

let w = Retag(x+L 1, shared) in
! w; w

)
(a) Program bongo accepts some reference (or pointer) y, immediately retags, and concurrently
writes to the first offset and reads from the second offset. It ends by returning the new reference
from each thread in a pair.

Bongo-Spec

t1(τ) = t′1
{z, z + 1} ⊆ dom(t′1.data) access(W, τ, {z, z + 1} , t1) = t4

{(bid, z) 7→∗ [v1, v2] ∗ (bid, zt) 7→∗t t1}
bongo((bid, z, τ))

w. ∃kxkpkw. w = ((bid, z, τ ++ [kx, kp]), (bid, z + 1, τ ++ [kx, kw]))∗
τ ++ [kx] /∈ dom(t1) ∗ (bid, z) 7→∗ [42, v2]∗

(bid, zt) 7→∗t t4

τ ++ [kx]←Tree

 {z← Unique, z + 1← Unique} ,{
kp ← Tree({z← Unique} , ∅),
kw ← Tree({z + 1← Frozen} , ∅)

} 


(b) Iris specification for bongo proved20 in Rocq.

Figure 4.13: Program bongo in λTB.

Consider the program bongo shown in fig. 4.13. This program accepts an
arbitrary reference y, retags a new node, and then in parallel retags from the
new x reference, and writes to the first offset on the left and reads from the
second offset on the right. Upon concluding, it returns the new references

20Our logic has a caveat that exclusive tags are yet not demonstrable across threads: we
are unable to show that kp ̸= kw. See the limitations section.

44

4.2. Program Logic

derived from each thread. The specification should not simply discard the
new nodes in the logical tree, since bongo returns the new references, and
thus clients of bongo may access these references.

Consider how we may write a specification for bongo. The program performs
heap accesses, so its precondition must provide ownership of the values
and borrow tree for the accessed offsets. Thus we will need some points-
tos (bid, z) 7→∗ [v1, v2] and (bid, zt) 7→∗ t1 in the precondition. In our proof
outline, we implicitly limit the offsets to {z, z + 1}, and break up the precon-
dition and postcondition trees. This is possible with a couple invocations of
Split-Grove to obtain “the middle trees”.

As for fig. 4.10, we need to know that a write access to τ on this arbitrary
tree succeeds, since the left thread performs a write access. Furthermore,
assuming that the offsets {z, z + 1} occur in the accessed node at τ in the tree
is reasonable, since for the block-spanning ghost trees/groves (recall fig. 4.7)
we otherwise cannot constrain which offsets are available throughout the
tree, and bongo continues to locally access the tree at τ at these offsets.

We may laterally decompose both the set of offsets and then the trees via
Lateral-Decomposition, and glue these reasoning principles together with
Disjoint-Offsets:

access(acc, τ, X1 ∪ X2, t1 ∪ t2) = access(acc, τ, X1 ∪ X2, t1) ∪ access(acc, τ, X1 ∪ X2, t2)

= access(acc, τ, X2, access(acc, τ, X1, t1))

∪ access(acc, τ, X1, access(acc, τ, X2, t2))

= access(acc, τ, X1, t1) ∪ access(acc, τ, X2, t2)

Now we provide a proof outline for bongo:{
access(W, τ, {z, z + 1} , tl

1 ∪ tr
1) = tl

4 ∪ tr
4∗

(bid, z) 7→∗ [v1, v2] ∗ (bid, z) 7→∗t tl
1 ∪ tr

1

}

access(R, τ, {z, z + 1} , tl

1 ∪ tr
1) = tl

2 ∪ tr
2∗

access(W, τ, {z, z + 1} , tl
2 ∪ tr

2) = tl
4 ∪ tr

4∗
(bid, z) 7→∗ [v1, v2] ∗ (bid, z) 7→∗t tl

1 ∪ tr
1


let x = RetagN(y, 2, mut) in
access(W, τ, {z, z + 1} , tl

2 ∪ tr
2) = tl

4 ∪ tr
4∗

(bid, z) 7→∗ [v1, v2] ∗ (bid, z) 7→∗t

tl
2 ∪ tr

2

{z← Reserved, z + 1← Reserved}
τ ++ [kx]



45

4.2. Program Logic



access(W, τ, z, tl
2) = tl

4 ∗ access(W, τ, z + 1, tr
2) = tr

4∗

(bid, z) 7→ v1 ∗ (bid, z) 7→∗t

tl
2

{z← Reserved}
τ ++ [kx] ∗

(bid, z + 1) 7→ v2 ∗ (bid, z + 1) 7→∗t

tr
2

{z + 1← Reserved}
τ ++ [kx]





access(R, τ, z, tl
2) = tl

3∗
access(W, τ, z, tl

3) = tl
4∗

(bid, z) 7→ v1∗

(bid, z) 7→∗t

tl
2

Reserved

τ ++ [kx]


let p = Retag(x, mut) in

access(W, τ, z, tl
3) = tl

4∗
(bid, z) 7→ v1∗

(bid, z) 7→∗t

tl
3

Reserved

Reserved

τ ++ [kx]

kp


p← 42; p

(bid, z) 7→ 42∗

(bid, z) 7→∗t

tl
4

Unique

Unique

τ ++ [kx]

kp





access(R, τ, z + 1, tr
2) = tr

3∗
access(W, τ, z + 1, tr

3) = tr
4∗

(bid, z + 1) 7→ v2∗

(bid, z + 1) 7→∗t

tr
2

Reserved

τ ++ [kx]


let w = Retag(x+L 1, shared) in

access(R, τ, z + 1, tr
3) = tr

3∗
access(W, τ, z + 1, tr

3) = tr
4∗

(bid, z + 1) 7→ v2∗

(bid, z + 1) 7→∗t

tr
3

Reserved

Frozen

τ ++ [kx]

kw


! w; w

access(W, τ, z + 1, tr
3) = tr

4∗
(bid, z + 1) 7→ v2∗

(bid, z + 1) 7→∗t

tr
3

Reserved

Frozen

τ ++ [kx]

kw



(bid, z + 1) 7→ v2∗

(bid, z + 1) 7→∗t

tr
4

Unique

Frozen

τ ++ [kx]

kw





46

4.2. Program Logic


(bid, z) 7→∗ [42; v2] ∗ (bid, z) 7→∗t

tl
4 ∪ tr

4

{z← Unique, z + 1← Unique}

{z← Unique} {z + 1← Frozen}

τ ++ [kx]

kp kw


As shown in fig. 4.13, the precondition requires that a write21 access on
the original tree succeeds, and we use its result in the final tree in the post
condition. As illustrated in our proof outline, in order to step through
the first RetagN, we must first insert a read access before our write access
in our hypothesis. Then we may apply WP-RetagN and then prepare
for the parallel operator. Via Split-Grove, we partition both the tree, re-
sulting read access, and the final tree resulting from the write access into
those with root block domain {zt, . . . , z} and one with root block domain
{z + 1, . . . , zt + |dom(t1.data)| − 1}. Furthermore, we must partition the
write access via Lateral-Decomposition and decompose the offsets ac-
cessed, and apply Disjoint-Offsets to remove the vacuous22 accesses.

Now we may apply WP-Par. In order to produce the right access assump-
tions, we employ Commute-Insertion after every retag to prepare for the
next operation. Furthermore, we may convert our reasoning to per-location
ghost trees instead of block-spanning ghost trees/groves via Tree-Accessor

23.
In the left thread, we once again insert a read before the write, then apply
WP-RetagN and WP-Store. In the right thread, we insert a read before
applying WP-RetagN, and insert another read access before applying WP-
Load. Since we need to produce a tree compatible with the write access for
the postcondition, we may apply Weaken-Tree to obtain the final tree from
the write access assumption, since trees related by access are related by pointwise
permission weakening24 by Weaken-via-Access.

21It would be possible to prove a more general specification saying that the write ac-
cess succeeds just for offset z, and a read access succeeds just for offset z + 1. To write this
specification, we would need to laterally split the pre and post access trees t1 and t4 into
a tree for the first offset and a tree for the second offset, or in our more general case parti-
tion each tree into one with root block domain {zt, . . . , z} and one with root block domain
{z + 1, . . . , zt + |dom(t1.data)| − 1}. However, for our purposes, such a specification is too
cluttered and fails to showcase interesting reasoning principles from fig. 4.12. Furthermore,
our provided specification is much more succinct than this more general one, which better
demonstrates the flexibility and expressiveness of the logic, since we may verify this program
with one access assumption without deconstructing the trees nor accesses in the specification.

22The partition with root domain {zt, . . . , z} is not concerned with z + 1, and the partition
with root domain {z + 1, . . . , zt + |dom(t1.data)| − 1} is not concerned with z.

23For arbitrary trees, it is not in general possible to convert a grove spanning a single offset
into a per-location ghost tree via Tree-to-Grove. This is a consequence of the design of the
state interpretation and points-tos, and we address this limitation later.

24See section 5.2 for more details.

47

4.2. Program Logic

Upon termination of the threads, we assemble the postcondition via Combine-
Grove. This last stage of the proof boils down to proving an equality between
the union of trees in the spatial context and the tree in the goal. Here we
make ample use of our tree library, performing term rewrites relating unions,
insertions, and re-associating insertions. See the full details in the Rocq
proof.

48

Chapter 5

Model

In any Iris-based program logic, one must instantiate Iris’s program logic
layer by providing the logical state for the state interpretation (SI). This chapter
outlines the ghost state buttressing the user-facing program logic. Each
section builds up the ghost state needed for a progressively more expressive
program logic, rather than dumping the most intricate version all at once.
We adopt the conventions established in section 2.2, and employ diagrams a
la fig. 2.4 to illustrate case analysis incumbent upon proving our primitive
Hoare logic laws via wp-lift-step.

5.1 Monolithic Ghost Trees

Outlined in fig. 5.1 are the ghost state connectives for a program logic for
Tree Borrows, where ghost trees available to clients of the logic are monolithic
and reflect the structure of the physical trees exactly. As shown in fig. 5.2,
the authoritative map containing the ghost trees may have fewer blocks than
the physical state, but for every tree it does have it matches exactly1 with
the physical trees. In the points-to for a ghost tree, one owns the tree for an
entire block, hence why it maps from BlockId.

This phase establishes the basic architecture for the whole development.
The ghost state for block sizes and values as shown in fig. 5.1 remained
unchanged for the rest of the development. The points-to connectives for
values and trees must also own knowledge of the block’s size, and block sizes
never change, thus a persistent block size achieves these ends. Concretely,
the points-to for block sizes enables users to infer how much of the array
of values they own, and at this stage one must own the entire tree for the
whole block. Thus the importance of a persistent points-to for block sizes as

1In the Rocq implementation, the ghost trees were exactly equal to a transformation on
the physical tree that converted every vector in the physical tree to a gmap with the same data.
We denote this equality as ≡t within fig. 5.2.

49

5.2. Pointwise Permission Weakening

Ss(σ) ≜ ∃ms : BlockId fin−⇀ N. •(ghost map(ms))
γs ∗ms ⪯s σ

bid 7→s n ≜ bid
�
↪−→ n

γs

∗ 0 < n

Sv(σ) ≜ ∃mv : Loc fin−⇀Val. •ghost map(mv)
γv ∗mv ⪯v σ

ℓ
dq7−→ v ≜ ℓ

dq
↪−→ v

γv

∗ ∃n. ℓ.block id 7→s n ∗ 0 ≤ ℓ.offset < n

ℓ
dq7−→∗ v ≜

(
∗

i 7→v∈v
ℓ+L i

dq
↪−→ v

γv
)
∗ 0 ≤ ℓ.offset ≤ ℓ.offset + |v| ≤ n

St(σ) ≜ ∃mt : BlockId fin−⇀ Tree(N, Protection× (N fin−⇀ LocState)).

•(ghost map(mt))
γt ∗mt ⪯t σ

bid 7→∗t t ≜ bid ↪→ t
γt ∗ ∃n. bid 7→s n ∗ every t node spans [0, n)

S(σ) ≜ Ss(σ) ∗ Sv(σ) ∗ St(σ)

Figure 5.1: Ghost state for monolithic logical trees/groves. One owns a ghost tree for the entire
block, and every block at every node has the full block domain.

mt ⪯t σ ≜ ∀bid t. mt(bid) = t→ ∃blk. σ(bid) = blk ∧ t ≡t blk.tree

Figure 5.2: Relation between monolithic ghost trees/groves and physical trees. Note that
t ≡t blk.tree entails that the trees have the same structure and content.

first shown in fig. 4.9 becomes clear. Optional blocks Block? in the physical
heap (fig. 4.4) help to ensure that block size points-tos can be persistent, since
persistence means that these points-tos are not “consumed” by WP-Free.

In separation logics for languages with block-based memory, a points-to
for block sizes is important for Free, since one typically needs to own the
resources for the entire block in order to free the block, as shown in fig. 4.8.
However, in this first model, we also require block size ownership for all
of the other primitive laws. The use of block size points-tos in the other
primitive laws is unusual, and we rectify this in section 5.4.

With this set up, the model is sound and “reasonably complete”: it is able
to reason about straight, sequential programs, such as main in fig. 4.6. It is
also able to reason about arbitrary trees. Unfortunately, it cannot yet reason
about the programs nor specifications from fig. 4.10 nor fig. 4.13.

50

5.2. Pointwise Permission Weakening

Reserved

&mut T

&mut Cell<T>

Unique Frozen

&T

Reserved
(con-

flicted)

E
↑W ↑R,↑W ↑W

↓W,↑W

↑R

↓R,↑R

↓W

↓R ↓R,↓W ↓R,↑R
↓W

Figure 5.3: Diagram of the protected permission state machine from Villani et al. [31]. UB
triggers upon reaching E. We label transitions by the events that cause them: (R)ead or (W)rite,
each either ↑(foreign) or ↓(local).

5.2 Pointwise Permission Weakening

In over-approximate reasoning, it is critical to have some way to weaken
knowledge about the state, otherwise one is essentially executing the dy-
namic semantics in all of its gratuitous detail. In a program logic for Tree
Borrows, knowing the exact tree in the execution quickly becomes irrelevant.
Moreover, the ability to reconcile potentially different permissions originating
from different execution branches curbs proof state explosion and spurious
complexity. Thus possessing some means to obtain a strongest possible weaken-
ing between Tree Borrows permissions is crucial to the utility and scalability
of a Tree Borrows program logic.

Thus this section introduces the machinery needed to achieve pointwise
permission weakening, which we used to prove the specification for foo in
fig. 4.10. Consider again the state machine for unprotected Tree Borrows
permissions as shown in fig. 2.2. A “weakening” relation should respect this
state machine. However, the state machine shown in fig. 2.2 is merely an
approximation of the real Tree Borrows state machine, which does not easily
lend itself to a nice, clean diagram.

Tree Borrows also has a notion of protected2 permissions, which have a
modified version of the state machine, as shown in fig. 5.3. As described
in more detail in Villani et al. [31], protectors ensure that some nodes do not
become Disabled. This guarantees that a particular reference corresponding
to that protected node stays alive. Protectors are specifically attached to

2Our core calculus does not support protected retags, and we leave full protector support
to future work. However, we believe it important to not entirely ignore protectors in order to
aid future development. Thus our Rocq implementation includes the full Tree Borrows state
machine for protectors, and protectors are not ignored in the logical state. While significant
work remains to fully incorporate protectors into the program logic, the foundation already
laid and machinery developed in these sections will lessen and assuage future refactoring.

51

5.2. Pointwise Permission Weakening

references at function call boundaries, which ensures that Tree Borrows is
consistent with the lifetime enforcement of the borrow checker, guaranteeing
that the reference’s lifetime persists at least until the end of the function.
Tree Borrows protectors are the Rust analogue to noalias attached to function
arguments in LLVM, which LLVM uses to guarantee that no other pointers
outside of a function call modify the location during the function’s execution.

Since the protected state machine has different behavior than that of un-
protected nodes, we require distinct weakening relations for unprotected
and protected permissions. “Staying alive” is basically equivalent to “not
becoming Disabled”, and a node generally only transitions to Disabled under
a foreign write (↑W). These transitions are important since they ensure that
accesses to references are well-bracketed, and end the lifetimes of references in
other parts of the borrow tree. When we place a node under protection, we
effectively forbid foreign writes to this node, restricting how other parts of
the code can interact with this location.

The diagrams in fig. 2.2 and fig. 5.3 conceal that the full Tree Borrows state
machine tracks whether or not a location was previously accessed. Recall
fig. 4.4. The accessed bits are part of the physical state, and with the Tree
Borrows permissions forms the location states, which comprise the true states
of the Tree Borrows state machines3. The accessed bit plays a key role in the
protected state machine. Specifically, foreign writes to a protected node only
lead to UB if the accessed bit is true, if an access as already occurred to this
reference. Essentially, we only bother to forbid foreign writes if some other
part of the code accesses this reference. This further complicates the design
of a weakening relation, since in general we require a weakening relation
between location states, not just the naked permission.

As a first attempt at a weakening relation, we essentially use reachability in
the state machine for this relation. We say that a location state ls1 is “weaker”
than another location state ls2 if ls1 is reachable from ls2 in the state machine.
It is fundamental to our program logic that location states connected by a
transition in the state machine satisfy our weakening relation. In other words,
if accessprot(acc, locality, ls2) = ls1 holds in the state machine, then we must
have ls1 ⪯prot ls2. This is an important property to users of the program logic,
which we denote as Weaken-via-Access. For instance, consider if in one
branch the code performs a local read, and in another the code performs a
local write, as in fig. 4.10. Let the starting permission be Reserved. In the read
branch, the permission will remain as Reserved. However, the write branch
will update the permission to Unique. In the postcondition of Foo-Spec,
we would like to own the strongest possible borrow tree that respects both
branches, and in this case the reference in question should have a Unique
permission. Thus, the read branch needs to be able to weaken the reference’s

3See the Rocq development for the full Tree Borrows state machine in all of its glory.

52

5.2. Pointwise Permission Weakening

permission from Reserved to Unique. Defining ls1 ⪯prot ls2 as reachability
satisfies this property.

ls1 lsphys
1

ls2 lsphys
2

access

⪯

access

⪯

n1 nphys
1

n2 nphys
2

access

⪯

access

⪯

t1 tphys
1

t2 tphys
2

access

⪯

access

⪯

Figure 5.4: Diagram representing the safety and preservation proofs needed for wp-lift-step.
We must lift safety and preservation from location states to nodes and trees. The solid arrows
indicate premises of the simulation property, and the dashed arrows indicate the conclusion.

However, there is another important class of property required of the weak-
ening relation in order to prove the primitive laws of the program logic via
wp-lift-step. Recall from section 2.2.3, that in order to prove the primitive
laws via wp-lift-step, we must prove safety and preservation. In order to prove
safety and preservation for our Tree Borrows program logic, the weakening
relation needs to be a simulation of the Tree Borrows state transition system,
as shown in fig. 5.4.

Let us consider more precisely the proof goal for preservation. That is, given
hypotheses accessprot(acc, locality, ls1) = ls2, accessprot(acc, locality, lsphys

1) =

lsphys
2 and ls1 ⪯prot lsphys

1 , we need to be able to show that ls2 ⪯prot lsphys
2 .

Unfortunately, reachability does not satisfy preservation in the unprotected
state machine.

To demonstrate this, let us consider a counterexample for preservation. Let
ls1 = (true,Reserved), lsphys

1 = (false,Reserved), ls2 = (true,Disabled), and
lsphys

2 = (false,Disabled). Let our premises include:

• accessUnprotected(↑W, (true,Reserved)) = (true,Disabled), a transition
in fig. 2.2.

• accessUnprotected(↑W, (false,Reserved)) = (false,Disabled), a transi-
tion in fig. 2.2.

• (true,Reserved) ⪯Unprotected (false,Reserved), which in the case of
reachability is satisfied by the transition
accessUnprotected(↓R, (false,Reserved)) = (true,Reserved), since a local
access always sets the accessed bit to true.

Thus, to establish preservation in this case, we would need to show
(true,Disabled) ⪯Unprotected (false,Disabled), and in the case of reachability
we need to show that there is a sequence of transitions from (false,Disabled)
to (true,Disabled) in the unprotected state machine. Unfortunately, no such

53

5.2. Pointwise Permission Weakening

sequence of transitions exists, because a local access to a disbaled permission
incurs UB. Thus, reachability does not satisfy preservation for the unprotected
state machine.

(,Disabled) ⪯ (,Frozen) ⪯ (,Unique) ⪯ (,Reserved)

(a) Unprotected location state weakening. Neither the accessed bit nor conflictedness matter.

(⊥, R)

(⊤, R) (⊥, Rh) (⊥, F)

(⊤, U) (⊤, Rh) (⊥, D) (⊤, F)

(b) We chart protected location state weakening in a Hasse Diagram. We denote a true, accessed
bit as ⊤, and a false, unaccessed bit as ⊥. Furthermore, we denote Reserved as R, Reserved
conflicted as Rh, Unique as U, Frozen as F, and Disabled as D. The partial ordering goes from
the top of the diagram for the strongest location states to the bottom of the diagram for the
weakest location states.

Figure 5.5: Location state weakening.

Thus, for unprotected nodes, we essentially use reachability without consid-
ering the accessed bit, shown in fig. 5.5a. The unprotected relation also holds
between any two Reserved permissions, conflicted or otherwise (harmonious).
It turns out that reachability still works for protected nodes, thus we employ
it for that case. We diagram the full weakening relation for protected location
states in fig. 5.5b.

mt ⪯t σ ≜ ∀bid t. mt(bid) = t→ ∃blk. σ(bid) = blk ∧ t ⪯ blk.tree

St(σ) ≜ ∃mt : BlockId fin−⇀ Tree(N, Protection× (N fin−⇀ LocState)).

•(ghost map(mt))
γt ∗mt ⪯t σ

bid 7→∗t t ≜ ∃t′. bid ↪→ t′
γt ∗ t ⪯ t′∗

∃n.bid 7→s n ∗ every t′ node spans [0, n)

Figure 5.6: Ghost state supporting pointwise permission weakening. This features the relation
between ghost trees and physical trees, where we lift pointwise permission weakening to the tree
level, and both trees have the same structure and offsets. One owns a ghost tree for the entire
block, and every block at every node has the full block domain.

54

5.3. Subtree Deletion

In fig. 5.6, we present the updated relation used in the SI, where the weaken-
ing relation for permissions is pointwise lifted over the tree structure, and
the ghost tree still has the same structure as the physical tree. The SI and
points-tos now employ the weakening relation as shown in fig. 5.5. The
ghost tree points-to now additionally existentially quantifies another ghost
tree t′, which is the actual owned tree, and the user-visible ghost tree t is
pointwise weaker than the owned t′. By existentially quantifying over the
owned ghost tree, this allows clients of the program logic to weaken the trees
in the points-to without needing direct access to the SI. If the user-visible ghost
tree was the owned tree in the points-to, then weakening the tree would
require invoking a ghost state update lemma using the authoritative ghost
map in the SI, which would require exposing the SI to clients. Typically, we
only want the SI directly accessed up to the layer proving the primitive laws
of the Hoare logic. Alternatively, one could restrict weakening to require a
weakest precondition predicate. Technically, this does “hide” the SI from
clients, but it still requires ownership of the SI in order to logically weaken a
tree. By concealing the owned ghost tree behind an existential quantifier and
taking advantage of reflexivity and transitivity of our location state weaken-
ing relation, users can replace a ghost tree in a points-to with a pointwise
weaker tree without owning the SI.

In reproving the primitive laws, we now need to utilize safety and preserva-
tion for location states, and lift it pointwise over the entire tree structure as
shown in fig. 5.4. The primitive laws as shown in fig. 4.8 require the premise
that the access on the ghost tree succeeds and produces and new ghost tree.
In proving the safety case of the weakest precondition via wp-lift-step, we
need to produce a new physical tree that the operational semantics can step
to, and in the preservation case we need this new physical tree to satisfy the
weakening relation for the new ghost tree.

5.3 Subtree Deletion

Executing any sufficiently intricate program under Tree Borrows may incur
unbridled growth in the borrow trees, especially as references get passed
down the call stack. After a while, most of the references deeper in the
borrow tree become ignored by and irrelevant to the rest of the program, or
even expire (become Disabled), and thus can no longer be locally accessed,
essentially rendered dead weight. In its Tree Borrows implementation, Miri
analyzes the entire program to determine which nodes become irrelevant
and may be deleted. Suppressing and concealing this growth from clients
of the program logic is crucial to its usability and scalability. Therefore, we
introduce another important logical weakening: the ability to prune subtrees
from the logical tree. The requires modifying the weakening relation between
ghost trees and physical trees in the SI, as well as between ghost trees in the

55

5.3. Subtree Deletion

points-to to allow the left-hand-side (LHS) trees to have a prefix of the structure
of the right-hand-side (RHS) trees. In other words, the address space of the
LHS tree may be a subset of the address space of the RHS tree. However,
it is not sufficient to just allow this structural weakening when considering
protected nodes.

In order to illustrate the issue with merely employing naive structural weak-
ening, consider reproving safety from fig. 5.4. Introducing naive structural
weakening sabotages safety in the protected case. To prove safety, we know
that t1 ⪯ tphys

1 , and we must show that there exists some tphys
2 such that

access(acc, τ, tphys
1) = tphys

2 . Consider an accessed and protected permission
within a node only in the physical tree. Recall the protected state machine
from fig. 5.3. Any foreign write ↑W to this location will incur UB, and
therefore must be prevented. However, since this node only occurs in the
physical tree, there is nothing in the premises to prevent this behavior.

Thus we need to refine our notion of structural weakening with a predicate
on RHS-only nodes. This predicate requires that protected nodes are and remain
unaccessed. Let us refer to this predicate as ΨRHS. In the safety proof, since
we require protected RHS-only nodes in the physical tree to be unaccessed,
we may conclude that the foreign access to these nodes will succeed. Our
refined structural and pointwise weakening relation is now sufficient to prove
safety and preservation, but introduces more case analysis into safety and
preservation proofs.

x

y

xphys

yphys zphys

x

y

xphys

yphys zphys

access

⪯

access

⪯

Figure 5.7: Safety and preservation proof under subtree deletion. We illustrate the proof for an
access to node y. This results in local accesses for nodes x and y, notated in blue, and a foreign
access to z, notated in red. The trees on the LHS represent ghost trees visible to users of the
program logic, while the trees on the RHS represent physical trees owned by the underlying SI.
For safety, we must exploit ΨRHS(zphys) in order to show an access will succeed. For preservation,
we must ensure that ΨRHS holds for zphys in the bottom-right tree.

56

5.4. Lateral Ghost Tree Separation

In particular, the preservation proof in the RHS-only case must be sensitive to
the relative locality of the current address with respect to the access address.
Regard fig. 5.7, which illustrates an access to node y. We must ensure that
the access is foreign with respect to z, since some local accesses would result
in UB and would violate ΨRHS by flipping on the accessed bit. Fortunately,
this is possible to demonstrate, since we restrict accesses to user-facing ghost
trees in the points-tos to addresses within that tree’s domain, as shown in
the primitive laws in fig. 4.8. For fig. 5.7, the user-facing program logic may
only directly access nodes x and y, but not z since z is not even present in
the LHS logical tree. This ensures that any access to a RHS-only node such
as z is foreign.

Furthermore, this refinement complicates the proof of transitivity of the
overall weakening relation for trees. Recall from the from previous section
that transitivity is a key property ensuring the feasibility of the existentially
quantified ghost tree construction of the points-to. In the proof for transitivity
of the weakening relation, we must show that t1 ⪯ t3, given that t1 ⪯ t2 and
t2 ⪯ t3. Consider the case where there are some nodes n2 and n3 and some
tag τ such that t2(τ).data = n2 and t3(τ).data = n3, but τ /∈ dom(t1). In this
case, we know that ΨRHS(n2) and n2 ⪯ n3, and we must show that ΨRHS(n3).
Fortunately, this property between weakening and the RHS predicate holds,
and this is a result of the behavior of the Tree Borrows state machines. More
precisely, this relies upon the observation that since n2 ⪯ n3 holds, we may
conclude that the accessed bits in n3 may only be true if they are also true

in n2, which follows from fig. 5.5b. But since we know that all of the accessed
bits in n2 are false, we may conclude that the accessed bits must also be
false in n3.

5.4 Lateral Ghost Tree Separation

So far, the ghost state does not allow users to break up ghost trees across
the block. The ability to break up resources across individual memory locations
is crucial for any concurrent separation logic, and in separation logics for
languages with block-based memory, this necessitates the ability to break
apart memory blocks and their resources. For instance, if one would like
to slice an array asunder and give each half to concurrent threads, then
the separation logic must provide a means to break apart the resources for
the block. Thus, we now provide the infrastructure to separate ghost trees
laterally.

At first glance, lateral tree separation does not appear particularly threatening.
Consider some ghost tree for an entire block that we would like to divide in
twain, and pass each half into different threads. These new trees have the
same address space and structure as the former tree, but each node contains

57

5.4. Lateral Ghost Tree Separation

(Unprotected, [Unique,Unique])

(Protected, [Frozen,Frozen]) (Unprotected, [Unique,Unique])

⊣⊢

(Unprotected, [Unique])

(Protected, [Frozen]) (Unprotected, [Unique]) ∗

(Unprotected, [Unique])

(Protected, [Frozen]) (Unprotected, [Unique])

˙|⇛

(Unprotected, [Unique])

(Protected, [Frozen]) (Unprotected, [Unique]) ∗

(Unprotected, [Unique])

(Protected, [Frozen]) (Unprotected, [Unique])

(Unprotected, [Reserved])

⊣⊢

(Unprotected, [Unique,Unique])

(Protected, [Frozen,Frozen]) (Unprotected, [Unique,Unique])

(Unprotected, [⊥,Reserved])

Figure 5.8: Lateral separation and recombination of ghost trees. After separating the trees, we
retag on the right tree, and then recombine.

complementary permissions for disjoint offsets of the block. However, each
thread may retag their ghost tree, and if we wish to recombine, we need to
reconcile these trees with different structures.

Consider the diagram in fig. 5.8. We may split our original ghost tree, which
contains two offsets at each node, into one half with only the first offset,
and another with just the second offset. Then we retag the right tree with
the second offset, and then recombine. Now, we have a ghost tree where
different nodes may have different subsets of the block’s domain. After
recombining, the new node still just has the second offset. In general, we
must support ghost trees where subtrees may have subsets of the root node’s
block domain. Later, we will illustrate exactly what it means for a ghost
tree to be well-formed, since we cannot allow nodes to have entirely arbitrary
subsets of the block’s domain.

Permitting different nodes to have different subsets of the block’s domain may
seem unattractive, as it incurs many more degrees of freedom in the ghost
trees. In fig. 5.8 for instance, it may be tempting to recover the permission
for the first offset of the new node. However, it is unclear how to recover
the Reserved permission from the physical tree, nor how to constrain such
permissions in the physical tree. It may be possible to just make this missing
permission Disabled, but this likely requires a ghost state update with the SI,
which in general we would like to conceal from users. Thus we allow some

58

5.4. Lateral Ghost Tree Separation

degrees of freedom for the block subsets, and we later illustrate the precise
notion of well-formed ghost trees.

Once we allow lateral separation, we also need to ensure that protectors
agree across the blocks for every node. Consider again fig. 5.8. Recall that in
Tree Borrows, protectors apply for the entire block, not per-location. When
combining trees laterally, we must be able to reconcile the values for the
protectors at every node. Disagreeing protector values for the same node
must incur a contradiction.

Sp(σ) ≜ ∃mp : (BlockId× Tags) fin−⇀ Protection.

•(ghost map(mp))
γp ∗mp ⪯p σ∗

∗
bid 7→blk∈σ

 ∗
τ 7→prot∈(prot<$>blk.tree)

(bid, τ)
�
↪−→ prot

γp


bid 7→p pt ≜ ∗

τ 7→prot∈pt
(bid, τ)

�
↪−→ prot

γp

St(σ) ≜ ∃mt : Loc fin−⇀ Tree(N, Protection× LocState).

•(ghost map(mt))
γt ∗mt ⪯t σ

ℓ 7→t t ≜ ∃t′. ℓ ↪→ t′
γt ∗ t ⪯ t′ ∗ ℓ.block id 7→ (prot <$> t′)∗

∃n. ℓ.block id 7→s n ∗ 0 ≤ ℓ.offset < n

ℓ 7→∗t t ≜ ∃t′.

(
∗

i 7→t′∈t′
(ℓ.block id, i) ↪→ t′

γt

)
∗

ℓ.block id 7→ (prot <$> t′)∗
t ⪯ t′ ∗WF(t) ∗WF(t′) ∗ dom(t.data) = dom(t′.data)∗
∃n. ℓ.block id 7→s n∗
dom(t.data) = {ℓ.offset, . . . , ℓ.offset + |dom(t.data)| − 1} ∗
dom(t.data) ⊆ {0, . . . , n− 1}

S(σ) ≜ Ss(σ) ∗ Sv(σ) ∗ St(σ) ∗ Sp(σ)

Figure 5.9: Ghost state supporting lateral tree separation.

Consequently, as shown in fig. 5.9, in order to support lateral tree separation,
we must refactor the ghost state and introduce new ghost state for protectors.
No longer does the ghost map for trees mt map block identifiers to ghost trees
spanning the whole block. Henceforth, the tree ghost map maps locations to
per-location ghost trees. Thus the primitive logical connective for ghost trees
is a points-to ℓ 7→t t. Recall the primitive laws from fig. 4.8. Most language

59

5.4. Lateral Ghost Tree Separation

primitives for heap operations, such as load, store, and atomic reads and
writes, only operate on a single memory location, rather than a span of
the block. Therefore, this ℓ 7→t t is useful for single-location operations
and accesses. As we will discuss later, operations on block spanning ghost
trees require more assumptions, which is why we believe it prudent to give
users access to the single location ghost trees. The systems-programming
minded reader may point out that in real programming languages, hardware
organizes the memory layout of values across multiple bytes, and that a single
load or store from memory often reads from multiple locations since different
values require different memory sizes. Our model is somewhat unrealistic,
since it may store any arbitrary value at a single location in memory, no matter
how large or small. Under a model that more precisely reflects the realities
of memory and bytes, it would be sensible for the program logic to perhaps
provide some notion of a “constant size ghost tree”, where every node in the
ghost tree has the same size and block offsets. Our implementation does not
make an attempt to hide the underlying memory organization, so we leave
the exploration of such alternatives to future work.

However, it is still sometimes useful to reason about ghost trees that span the
block as well, hence we also provide a more general ℓ 7→∗t t connective. This
is particularly useful for retagging, where the client sees a single insertion
into a single block spanning tree, rather than multiple insertions over a list
of per-location trees. As shown in fig. 5.9, we define this connective as a
separating conjunction over multiple per-location ghost trees spanning its
range of the block. In Rocq, we compute a gmap of per-location ghost trees
from the block spanning ghost trees. For this computation to work properly,
we need to assume that the tree is well-formed, written as WF(t′).

5.4.1 Well-formed Ghost Trees

WF(t) ≜ ∀ks1 ks2 n1 n2. t(ks1).data = n1 → t(ks1 ++ ks2).data = n2 →
dom(n2) ⊆ dom(n1)

Figure 5.10: The notion of well-formed block spanning ghost trees.

Here we consider what it concretely means for a block spanning ghost tree
to properly represent a collection of contiguous per-location ghost trees.
Furthermore, here we will illustrate how block spanning ghost trees may
have varying subblocks at each node, and how this relates to subtree deletion.

Recall from section 5.3 that the ghost trees may contain a substructure of the
physical tree, and this becomes further reduced by the weakening relation
between the user-facing ghost tree and the hidden, existentially quantified

60

5.4. Lateral Ghost Tree Separation

ghost tree in the points-to. We still support this structural weakening, but
now also on the granularity of individual memory locations, not the entire
block. As a result, different per-location trees from the same block may have
different structures.

[q0, q1, q2, q3, q4, q5]

[r0, r1, r2, r3,⊥, r5]

[⊥, s1, s2, s3,⊥, s5]

[⊥, t1,⊥, t3,⊥, t5]

[⊥,⊥,⊥, u3,⊥, u5]

[⊥,⊥,⊥, v3,⊥,⊥]

⊣⊢ q0

r0

∗ q1

r1

s1

t1

∗ q2

r2

s2

∗ q3

r3

s3

t3

u3

v3

∗ q4 ∗ q5

r5

s5

t5

u5

Figure 5.11: Visualization of well-formedness. This represents a slice of the trees along a single
address path [q, r, s, t, u, v]. The LHS tree slice is from a block-spanning tree for block offsets
{0, . . . , 5}, and the RHS is slices of the corresponding per-location trees also for block offsets
{0, . . . , 5}. This provides justification for the definition of well-formedness.

Consider a single path down the address space for some contiguous collection
of per-location ghost trees. We essentially have a list of lists of varying lengths,
all “hanging” from the same root. This is the natural structure a common
address path exhibits for our per-location trees, the ghost trees actually
owned in the ghost map, shown in the RHS of fig. 5.11, exhibiting slices of
the per-location trees for offsets {0, . . . , 5} along address path [q, r, s, t, u, v].
Now consider how this list of lists looks if we combine all of these locations
into a single span of the block, shown in the LHS of fig. 5.11. Since all lists
“hang” from the root, we have a full, continuous span of the block at the
root of the new, block spanning tree. But since the lists may have different
lengths (some subtrees in the per-location trees may have been deleted or
not retagged at some addresses but not for others), the new nodes down
the path for the block spanning ghost tree will have fewer offsets from the
root block span. The set of offsets in a node below the root may not even be
continuous, since the middle per-location ghost tree could be missing that
tag in its address space. We exhibit such structure in fig. 5.11, where the LHS
tree misses entries for offsets {0, 2, 4} for the t node, since this address is
missing from the per-location trees at these same offsets.

61

5.4. Lateral Ghost Tree Separation

Moreover, notice that the block subdomains of the new block spanning ghost
nodes along a path down the address space are not random, but parent
nodes have a superset of block offsets of each of their children. Consider again the
image of lists or “strings” hanging from some common height, representing
a common path down the address space. Examine again the tree slices
in fig. 5.11. These strings may have different lengths, as shown for the
RHS tree slices in fig. 5.11. At each progressively lower height, the set of
strings still present at that height is a subset of the previous height, and so
on. This physical intuition hints at a justification the formal property we
require for our block-spanning ghost trees: as exhibited by the LHS tree
slice in fig. 5.11, along the path [q, r, s, t, u, v] the tree’s nodes feature offsets
{0, 1, 2, 3, 4, 5} ⊇ {0, 1, 2, 3, 5} ⊇ {1, 2, 3, 5} ⊇ {1, 3, 5} ⊇ {3, 5} ⊇ {3}. Along
every path down the tree, the child nodes have a subset of the block domain
of their parent nodes. We capture this well-formedness property formally in
fig. 5.10.

Since we now describe our block-spanning ghost trees t by WF(t), we need
to further refine our weakening relation. From section 5.3, recall the property
ΨRHS: every protected node only on the right-hand side must be unaccessed.
This prevents foreign writes from causing UB. The property ΨRHS applies per-
node, since previously weakening could only capture structural differences
at the granularity of entire nodes. In order to facilitate lateral separation, we
must be able to capture structural differences at the granularity of individual
locations. For block-spanning ghost nodes n1 and n2, n1 ⪯ n2 now entails
that dom(n1) ⊆ dom(n2). Therefore, we require a refined predicate ψRHS
over individual location states applying to location states at offsets in n2 but
absent from n1. Analogously to ΨRHS for nodes, ψRHS(ls) requires that ls
either inhabits an unprotected node, or if it inhabits a protected node that it
is unaccessed.

The well-formedness property is fundamental to reasoning about ghost trees
under lateral separation. Consider a case of preservation of wp-lift-step,
shown in fig. 5.12, where the LHS user-facing ghost tree is directly accessed
at node y at offset 1. We need the preservation property to remain valid
for block-spanning ghost trees, as in the case of WP-RetagN, where one
performs a read access across the retag range. Before we introduced lateral
separation, any access to any offset in the block was implicitly within the
range of the ghost tree’s block span, since every node of every ghost tree
spanned the entire block. This is no longer the case, since block spanning
ghost trees are now described by WF(t). Now we need to guarantee that the
accessed range of offsets is within the domain of the ghost node at the access
address. Thus we require clients to provide this evidence for the Hoare laws
concerning block-spanning ghost trees, such as for retagging and freeing as
shown in fig. 4.8.

62

5.4. Lateral Ghost Tree Separation

{x0, x1}

{y1} {z0}

{x0, x1, x2}phys

{y0, y1, y2}phys {z0, z1, z2}phys

{x0, x1}

{y1} {z0}

{x0, x1, x2}phys

{y0, y1, y2}phys {z0, z1, z2}phys

access

⪯

access

⪯

Figure 5.12: Case for the preservation proof under lateral separation. We illustrate the proof
for an access to node y. This results in local accesses for nodes x and y, notated in blue, and a
foreign access to z notated in red. The trees on the LHS represent ghost trees visible to users of
the program logic, while the trees on the RHS represent physical trees owned by the underlying
SI. We rely upon the fact that we may only access offset 1 at node y.

When proving preservation on the level of ghost nodes, we require that the
set of accessed offsets is a subset of the block domain of the node only when
the access is local. Consider fig. 5.12 from node x’s perspective. In the ghost
tree, node x contains block offsets {0, 1}. In order for the local access on
node x to succeed, it is necessary to demonstrate that x’s offsets contain
the accessed offset 1, that {1} ⊆ {0, 1}. We are able to demonstrate this in
general as a consequence of the well-formedness property. In this case for
node x, we need to ensure that the access succeeds for the physical tree at
node x for offset 1. Essentially, we reason that since we know that the access
succeeds for node y at offset 1 in the ghost tree, and since 1 is included in
x’s offsets in the ghost tree, we may directly obtain evidence that the access
succeeds for x at offset 1 in the physical tree.

But block domains for foreign-accessed nodes are not guaranteed to be
supersets of the accessed range. Consider fig. 5.12 from node z’s perspective.
In the ghost tree, node z only has offset 0, and of course 1 /∈ {0}. Thus we
need to demonstrate that the access succeeds and that the access preserves
ψRHS(z

phys
1) for node z at offset 1 in the physical tree. Thankfully, this

property follows from the definition of the Tree Borrows state machine.

Further research is required to uncover if and how this well-formedness
property can be hidden from clients to the program logic. For now, we
expose this to users, as shown in the points-to laws in fig. 4.9. In particular,
in order to cleave apart a ghost tree one must show that each division is well-

63

5.4. Lateral Ghost Tree Separation

formed. In Rocq, we construct the witnesses for the partitions by filtering
the offsets pointwise at each ghost node. These pointwise filters and explicit
witnesses may be hidden from the user in some cases.

In the definition of ℓ 7→∗t t, we need to explicitly require WF(t) for the
client-visible ghost tree as well as for the hidden, existentially quantified
ghost tree in WF(t′), as shown in fig. 5.9. The weakening relation t ⪯ t′ does
not entail well-formedness in either direction.

5.4.2 Protector Agreement

Protectors-Persistent

bid 7→p pt ⊢ � bid 7→p pt
Protectors-Agree

bid 7→p pt1 ∗ bid 7→p pt2 ⊢ pt1 and pt2 agree

Protector-Prefix

pt1 ⊆ pt2

bid 7→p pt2 ⊢ bid 7→p pt1

Combine-Protectors

bid 7→p pt1 ∗ bid 7→p pt2 ⊢ bid 7→p pt1 ∪ pt2

Separate-Protectors

pt1 and pt2 agree
bid 7→p pt1 ∪ pt2 ⊢ bid 7→p pt1 ∗ bid 7→p pt2

Tree-Protectors-Agree

ℓ.block id = bid
bid 7→p pt ∗ ℓ 7→t t ⊢ pt and (prot <$> t) agree

Grove-Protectors-Agree

ℓ.block id = bid
bid 7→p pt ∗ ℓ 7→∗t t ⊢ pt and (prot <$> t) agree

Figure 5.13: Protector points-to laws.

Recall from the example shown in fig. 5.8 that we require some means of
forcing protectors to agree across the blocks. Thus we introduce a new ghost
map from the product of block identifiers and tree addresses to protector
values. As shown in fig. 5.9, we essentially introduce an agreement map for
protector values, as described in section 2.2.2. We define the points-tos for
protectors bid 7→p pt in terms of trees of protectors, which we then store in
the points-tos for both per-location and block-spanning trees. We use the
protector values of the hidden, existentially quantified trees since these are
the trees actually owned in the ghost state. We present the properties of the
protector points-tos in fig. 5.13. Foremost, these points-tos are persistent,
allowing us to duplicate and store them in the tree points-tos, as we have

64

5.4. Lateral Ghost Tree Separation

done with the block size points-tos.

The protector ghost state becomes necessary in order to prove the union laws
Combine-Grove and Split-Grove for ghost trees. Recall the laws as shown
in fig. 4.9. If we wish to combine t1 and t2 into t1 ∪ t2, we must ensure that
the protectors agree for their common nodes, which always includes the root.
The attentive reader may inquire “why add more ghost state, why not simply
add a constraint that the protectors agree for t1 and t2?” This indeed would
constrain the protectors for t1 and t2, but not for the hidden, existentially
quantified ghost trees t′1 and t′2.

Without a ghost state for protectors, there is no way to constrain the protectors
for the existentially quantified trees, which in general are superstructures of
their user-facing counterparts. t′1 and t′2 may share some structure outside
of both t1 and t2, which is a blind spot of naively merely constraining the
user-facing trees. By owning the protector ghost state for the concealed trees,
we ensure that protectors match when we would like to combine ghost trees.

x

y z

w

≡−∗
x

y z

w u

v t

Figure 5.14: Performing an update for physical trees. We highlight the nodes from the old
physical tree in gray, and we highlight the new nodes in orange. In order to provide the protector
points-to for the updated tree points-to, we need to know that there is a path to node u in the
new physical tree.

When we update the state interpretation with new trees, we must insert
the new protector values using GhostMap-Auth-Insert-Persist-Big. Let
the old physical tree be some tphys

1 , and the new physical tree be some
tphys
2 . We require that the new tree is a superstructure of the old tree, that
dom(tphys

1) ⊆ dom(tphys
2). Furthermore, the protector values of tphys

2 must
agree with those of tphys

1 . In order to update the SI for protector values,
we apply GhostMap-Auth-Insert-Persist-Big with new protector values
(prot <$> tphys

2) \ (prot <$> tphys
1), which is trivially disjoint from the

(prot <$> tphys
1) already inhabiting the SI. In fig. 5.14, we describe the old,

already present tree of protector values (prot <$> tphys
1) with the gray nodes,

65

5.4. Lateral Ghost Tree Separation

and the new tree of protector values (prot <$> tphys
2) \ (prot <$> tphys

1) with
the orange nodes.

Applying GhostMap-Auth-Insert-Persist-Big provides us with new frag-
ment elements for (prot <$> tphys

2) \ (prot <$> tphys
1). Vexingly, we need the

fragments for the entirety of (prot <$> tphys
2) in order to establish the new

tree points-to fragment corresponding to tphys
2 . Recall from section 2.2.2 the

“common trick” for agreement maps to ensure that every value that could
have possibly been allocated into the ghost map is owned persistently. Note
that we employ this technique for the protector ghost map, as shown in
fig. 5.9. We may apply this technique to obtain the persistent fragments for
the protector tree (prot <$> tphys

1), and combine this with our fragments
from (prot <$> tphys

2) \ (prot <$> tphys
1) to recover (prot <$> tphys

2). Essen-
tially, we need these owned fragments from the physical state in the SI to
“bridge the gap” between the old ghost tree and the new ghost tree and
physical tree.

5.4.3 Final Thoughts and Challenges

The inclusion of the well-formedness predicate (section 5.4.1) and protector
agreement ghost state (section 5.4.2) introduce new case analysis and com-
plexity into our development. In particular, the SI ghost update laws become
much more challenging to prove, since for a block-spanning tree/grove we
ultimately own and update per-location trees. This requires flexibility in our
representations, where we may convert between trees of blocks and blocks of
trees, and to and from relations between block spanning trees and relations
between maps of per-location trees. Ultimately, this flexibility between repre-
sentations pays off, since as a result we obtain laws such as WP-RetagN. In
WP-RetagN, one may logically retag without owning all of the offsets in a
block. In our Rocq implementation, we provide a version of WP-RetagN for
per-location trees, derived from the more general law. Thus, for retagging,
we demonstrate foundationally that it is sound to ignore unneeded offsets.

In order to reprove many results for lateral separation, especially for the
update laws and safety and preservation, we break abstraction by considering
what assumptions lemmas in the lower layers of our logic require of the
primitive laws. In order to support lateral separation, it no longer suffices
to perform exclusively pointwise reasoning about trees, and we need to
constrain the tree structure and properties based on relative access locality.

66

Chapter 6

Conclusion

Summary of Contributions. We briefly recap our contributions:

• We produced accepted merge requests into Rocq-std++ and Iris list,
vector, and finite map libraries.

• We built extensive Lilac Tree libraries.

• We implemented in Rocq a formalization of Tree Borrows built on Lilac
Trees.

• We designed and constructed a mechanized Tree Borrows program
logic in Iris featuring:

– Pointwise permission weakening, enabling reconciliation of per-
missions between different branches of programs.

– Subtree deletion, for curbing proof state explosion, especially for
unused or disabled nodes.

– Lateral tree separation, enabling concurrent separation and recom-
bination of heap blocks.

6.1 Implementation

As is par for the course in Iris-based developments, we have proven adequacy1

of our program logic. We have applied this adequacy result to our Rocq
examples for bar (fig. 6.1) and bongo (fig. 4.13). In Rocq, we have more
examples for our program logic emphasizing specific features (pointwise
permission weakening, subtree deletion, lateral separation), and test cases for
our implementation of the Tree Borrows state machine demonstrating that it
exhibits all expected transitions.

1Our logical state via the state interpretation and points-tos and our notion of weakest
preconditions faithfully reflect the physical execution of any program.

67

6.1. Implementation

1 pub fn bar(opaque: impl FnOnce() -> bool + std::marker::Send) -> i32 {

2 let mut root = Box::new([3, 3]);

3 let w: &mut i32 = unsafe { &mut *std::ptr::addr_of_mut!(root[1]) };

4 let (x0, x1) = root.split_at_mut(1);

5 std::thread::scope(|s| {

6 s.spawn(|| {

7 let y: &mut i32 = &mut x0[0];

8 if opaque() { *y = 42; } else { *y; }

9 });

10 s.spawn(|| { let z: &i32 = &x1[0]; *z; });

11 });

12 *w = 13; x0[0] = x0[0];

13 let q = x0[0] + *w;

14 // let r = &mut root[0..2];

15 // drop(r);

16 q

17 }

(a) Program bar in Rust. Two-phase borrows is constrained by the borrow checker to specific
cases, such as implicit reborrows in function arguments. However, Tree Borrows does not impose
these restrictions. Thus we exploit unsafe to bypass the borrow checker. This example succeeds
under Miri when Tree Borrows is enabled, but trips UB under the default Stacked Borrows model.

bar(opaque) = let root = AllocN(2, 3) in
let w = Retag(root+L 1, mut) in
let x = Retag(root, mut) inlet y = Retag(x, mut) in

if opaque(()) then y← 42
else ! y

let z = Retag(x+L 1, shared) in
! z


w← 13; x← ! x;
let q = ! x + ! w in

let r = Retag(root, mut) in
Free(r); q

(b) Program bar in λTB. We explicitly deallocate from the reference in r to demonstrate the
flexibility of Tree Borrows. We have verified this example in Rocq and Iris with our program logic.

Figure 6.1: Large example for a Tree Borrows program logic. The function bar accepts a function
opaque which (may) non-deterministically output true or false. The function allocates a new
array on the heap, retags sibling mutable nodes, accesses different offsets in parallel, performs
more operations on the original nodes, and then finally returns and frees memory. This example
exhibits two-phase borrows, which enables the program to create sibling mutable references w
and x, and creates a borrow tree both in the physical and logical state that is not virtually a list
nor a stack.

68

6.2. Limitations

Our Rocq implementation is ≈ 23500 lines2 of code, which is distributed
between greater than 11500 lines of specification and 11900 lines of Ltac
proofs. The Lilac Tree and Tree Borrows program logic modules and libraries
contribute the most to these numbers, but a significant contribution came
from our utility modules that extend Rocq-std++ with more functions, lem-
mas, and tactics especially for finite maps, lists, and vectors. Our utility
modules are not specific to our custom Lilac Tree implementation nor the
program logic. Thus we submitted merge requests to Rocq-std++, Iris and Iris
Contributions with lemmas that emerged from this work. In total across all
three repositories, we have submitted 21 merge requests, and the Rocq-std++
and Iris maintainers accepted and upstreamed 14 of these. We list each of
these accepted merge requests in chapter A.

Our implementation is available at https://gitlab.inf.ethz.ch/ou-plf/
tree-borrows-program-logic, and the latest commit hash is
ccca9f325f909dceed4fd88008862f64296dbfd9. Note that in our Rocq imple-
mentation, we do not call our core calculus λTB; we simply refer to it as “the
core calculus”.

6.2 Limitations

This section focuses upon limitations of current features and design choices
within our implementation. For a summary of extensions that go beyond the
intended features of the implementation, see section 6.3.

Exclusive Reference Tags Tree combining is not complete: we do not know
that reference tags generated for separate trees of the same block are actually
different. One possible solution entails adding ghost state for exclusive tokens
of a block identifier and tag, and every retag generates a new exclusive token.

Zero-sized Retags To perform any retag, including retags with a range of
0, the operational semantics of our λTB requires that the block in question
actually exists in the heap and has not been deallocated. Furthermore,
the program logic requires ownership of the tree for the start offset of
any retag, as shown in WP-RetagN. Systems programmers may want to
create references to potentially deallocated blocks, to compute an array
size for example. In Rust, it is sound to create a zero-sized reference to a
deallocated block, but we do not model this in our operational semantics.
Thus future work is required to better specify and handle these edge cases in
our operational semantics and program logic.

2Only Rocq, no whitespace nor comments.

69

https://gitlab.inf.ethz.ch/ou-plf/tree-borrows-program-logic
https://gitlab.inf.ethz.ch/ou-plf/tree-borrows-program-logic
https://gitlab.inf.ethz.ch/ou-plf/tree-borrows-program-logic/-/commit/ccca9f325f909dceed4fd88008862f64296dbfd9

6.2. Limitations

Relative Ghost Tree Offsets Offsets in block-spanning ghost trees/groves
are global, rather than relative with respect to the offset in the location of the
points-to. This is dissonant with value points-tos, which have offsets relative
to the location’s offset, as is common in many Iris-based program logics. The
issue lies in constructing witnesses for lateral separation. As shown in fig. 4.7,
ghost blocks at each node are indexed by natural numbers used for the offsets.
This statically enforces that offsets may not be negative. In our global offset
design, to construct a witness to partition a grove laterally for Split-Grove,
we perform a filter operation for the left root domain and the right root
domain. If we change the representation to use relative offsets, then we
would need to perform a kmap on the keys of the right partition, subtracting
them by the size of root domain of the left partition. However, in Rocq-std++
nearly all kmap lemmas require the operation on keys to be injective in general,
not just injective for the domain of the given map. Subtraction on the natural
numbers is not injective, thus in order for the proofs to be tractable, we would
either need to change our definition of block-spanning trees to use integers
for the block domains, or refine the Rocq-std++ libraries to support lemmas
with weaker injectivity assumptions.

Exposed Memory Model In future work, we would prefer to entirely conceal
the definition and construction of memory locations and references, which
would scale up to more complex models with varying memory layouts and
byte encodings.

Points-to Conversions for Single-location Trees Recall Tree-to-Grove from
fig. 4.9. In this law, we may convert a per-location ghost tree into a grove
spanning only a single offset. This grove must exactly equal the result of
the conversion function T JtKℓ.offset

. This law does not allow us to convert
any grove for a single offset into a per-location tree. This is because groves
may have empty, spurious nodes with no block offsets. While we may prune
these vacuous nodes from a tree via Weaken-Tree, we may not add empty
nodes into a tree, thus the bidirectional entailment does not hold. This is
particularly cumbersome when reasoning about arbitrary trees, such as for
fig. 4.13. When proving each thread for Bongo-Spec, we may not simply
discard any potentially empty nodes, since the postcondition expects a tree
with the same structure at the end. One possible solution involves modifying
the weakening relation t1 ⪯ t2 to allow nodes only on the left-hand side
if they have empty subblocks. This solution may prove unfeasible, since this
breaks intrinsic transitivity of t1 ⪯ t2. Another solution may be to modify
the well-formedness condition to prohibit such empty nodes. This should be
sound, since in points-tos for block-spanning groves as shown in fig. 5.10, per-
location trees constitute the underlying owned resource, which by definition
cannot have these vacuous nodes. This would require modifying the proofs

70

6.3. Possible Extensions

for Combine-Grove and Split-Grove, which construct witnesses of each
partition of the tree via a filter on the offsets. Such a naive filter results in
empty nodes, so if we modified well-formedness to forbid empty nodes, we
would need to further refine the results of the filter to prune empty nodes.
This limitation is at most annoying, and despite it we prove Tree-Accessor.
The proof of Tree-Accessor required obtaining a “middle” per-location
ghost tree, which was non-trivial given that this per-location tree may be a
substructure of the overall original block-spanning grove.

6.3 Possible Extensions

This section offers speculation about directions for new features in future work.

Protectors In order to fully support protectors, we must change our op-
erational semantics and program logic for λTB. The operational semantics
needs to support protected retags and keep track of the call context in the vein
of the Simuliris Tree Borrows Rocq implementation [31]. This entails that the
operational semantics needs to strongly update certain protected nodes to
unprotected at the end of some function calls. However, the current logical
state would not be compatible with this, since protector values are currently
placed in essentially an agreement map, which means that one cannot update
a protector value since they are persistent. The program logic would still
require some ghost state for protectors that enabled combining ghost trees,
ensuring that nodes at common addresses have matching protector values.
Perhaps some fractional permissions would be sufficient, but the fractions
would vary per node, not per tree, making defining the new tree points-tos
more difficult. Since an unprotected node remains unprotected, the ghost
state could still enforce that unprotected values are persistent, but allow
fractional permissions for protected nodes. If one laterally separates a tree
with a protected node and then later wishes to execute the end of the call
that strongly updates the node to Unprotected, then users would need to
recombine the trees and the protected permissions would all need to sum to
1. Additional difficulties arise from the protector end semantics, which perform
implicit accesses upon protector removal. This requires much more thought
and consideration.

Interior Mutability In Rust, interior mutability is often achieved via use
of UnsafeCell<T>, which allows multiple shared references to data that
may be modified by exploiting unsafe Rust. Interior mutability is useful
when one can only ensure the borrow checking rules at runtime. Rust
developers employ interior mutability to implement data structures such
as trees with parent pointers. Tree Borrows in Miri [31] already supports
interior mutability, in particular with the special reserved interior mutable state.

71

6.3. Possible Extensions

To add this feature to λTB, one would need to add some interior mutable
primitive to the syntax and semantics of λTB, and to update our Tree Borrows
state machine with this special reserved permission. Interior mutability in
Tree Borrows is under active development to refine its behavior and render
it less permissive. Recently, Chen [3] developed more granular tracking to
interior mutable data in Tree Borrows. We wait to adopt these features for
interior mutability in λTB until the semantics become stable and edge cases
are ironed out.

Vertical Tree Separation: Orphaning Our logic is capable of laterally sep-
arating trees across blocks, but it is not capable of breaking apart the tree
structure itself. This would be a powerful reasoning principle, which would
make specifications much more modular, as they perhaps would only need
to be concerned with the locally accessed parts of a tree. For instance, a specifi-
cation for a function accepting a reference, such as that for bongo (fig. 4.13)
would not need a points-to for the entire tree, but just for a singleton tree
representing the subtree starting from the given reference’s tag. This would
mean that a tree points-to would map a reference to a subtree, no longer
a location to a tree. However, one must separate tree structure in way that
guarantees frame preserving updates. For instance, consider separating a logical
tree into a parent tree and a subtree (orphan) at some address. In general,
performing Tree Borrows accesses on the orphaned subtree should result in
foreign accesses to its parent tree. But naive separation of these trees would
not incur that, and combining these trees back together may produce an
invalid tree. Furthermore, performing accesses on some parts of the parent
tree should result in local or foreign accesses to the orphaned tree. Thus ver-
tical tree separation requires restrictions that respect the state machine. For
instance, perhaps one may need restrict orphaning to cut only at addresses
where any accesses to the orphaned tree only results in provably idempotent
foreign accesses to the parent tree, and one forbids direct accesses to any part
of the parent tree entirely.

Tree Resource Algebra In order to implement logical vertical tree separa-
tion/orphaning, we may require a Resource Algebra (RA) or CMRA for Lilac
Trees. It is not clear how to fulfill the RA axioms for trees, especially how to
instantiate the monoid composition · and core | − | operations. For starters,
we may need some notion of addressed trees, or trees paired with some address
denoting their position from the root. The address in the pair would denote
whether one tree is a subtree, parent tree, or cousin tree with respect to
another. While one may intend this feature to support separating/orphaning
a subtree from its parent tree, its implementation opens the door to reason-
ing about combining cousin trees. In Iris RAs, monoid composition · defines
separation, and this operation needs to be total. The nature of combining

72

6.4. Related Work

cousin trees is an open research question. For example, one could define the
RA for trees with optional data Tree(K, A?), and one could construct spurious
parent nodes with ⊥ data when combining cousin trees. One could also
use these vacuous ⊥ nodes when combining a parent tree with a orphan
tree where there is a “gap” in the edge of the address domain of the parent
tree and the address of the orphan-to-be-adopted tree. However, this is
somewhat undesirable, since we create trees with empty, placeholder nodes.
In terms of concrete implementation, it may be possible to encode a Lilac
Tree RA in terms of the gmap RA. The protector ghost state, as shown in
section 5.4.2, perhaps hints at the feasibility of such an encoding, where the
underlying RA for protectors is a ghost map from block identifiers and tags
to protector values, but the points-tos for protectors assign a block identifier
to a tree of protectors. It may be possible to further refine this approach to
achieve vertical separation for trees, and perhaps avoid entirely some of the
aforementioned design pitfalls of directly defining a Lilac Tree RA.

Intermediate Node Deletion In Tree Borrows, the execution adds many
nodes to the borrow trees as retags accrue over time. Many of these intermedi-
ate nodes are not directly accessed at some point for the rest of the execution,
or become impossible to access, for instance if an invoked function performs
retags to some passed in reference, and returns a final reference to the same
location, as in fig. 4.13. The intermediate retags performed by such a function
produce intermediate references that are not directly accessible to the rest of
the program, but their grandchildren are, so we may not entirely delete their
subtrees. Thus we would benefit from logically deleting intermediate nodes in
the borrow trees. This would be especially helpful for verifying functions that
recursively retag the same location. As with full subtree deletion section 5.3,
this will likely require constraints to ensure that transitivity of the weakening
relation t1 ⪯ t2 and that safety and preservation (fig. 5.4) for trees still hold.

6.4 Related Work

Simuliris Tree Borrows Implementation Villani et al. [31] implements a
core calculus for Tree Borrows in Rocq for Simuliris. This work handles
protectors and interior mutability, which our λTB does not. Both Simuliris
Tree Borrows and our λTB are limited to static retag sizes, whereas in real
Rust and Miri, Tree Borrows retag sizes may be computed at runtime. We
could have adopted its core calculus for this work, but we chose to implement
Tree Borrows from scratch. Most importantly, we desired a more flexible
tree data type than the one used in Simuliris, which employs a complicated
encoding. We wanted the multi-child tree structure to be intrinsic to and
evident from the tree’s construction.

73

6.4. Related Work

Stacked Borrows Program Logic Louwrink [20] features a program logic
for Stacked Borrows [12] built in Iris. Theirs is the most similar work to ours,
as it builds a core calculus and program logic sensitive to a candidate aliasing
model for Rust. Obviously, the main difference between their work and ours
is that their work targets Stacked Borrows, which misses some features from
Tree Borrows, such as two-phase borrows and compatibility with block-based
memory. Thus in Louwrink [20], there is only support for single-location
allocations, ergo no lateral separation of blocks, which our work supports.
However, Louwrink [20] supports logical substacks, which would correspond
to both subtree deletion (which we support), and intermediate node removal
(which we do not support). Louwrink [20] also support fractional stack
points-tos, which one may use in instances where the access is idempotent.
We do not currently support fractional tree points-tos, but we do not see any
inherit obstacles to extending our framework to support this. Both Louwrink
[20] and our work support pointwise permission weakening, which they
include in their substack relation. While our work does not fully support
protectors, Louwrink [20] does not address protectors in any layer. Our
support for protectors is indeed incomplete in our work, but we hope it
becomes a solid foundation for future work, where especially the RHS-only
condition in our weakening relation will likely endure the refactors to fully
support protectors.

RustBelt and λRust RustBelt [13] via its λRust formalization includes a se-
mantic typing relation built upon a lifetime logic, which is meant to capture
Rust borrowing behavior, especially for unsafe contexts. However, critically,
RustBelt does not consider any aliasing model, rendering its results potentially
incompatible with some compiler optimizations. In moving towards a more
complete Rust formalization and program logic, one may want to develop
a new version of RustBelt with logical relation for a Tree Borrows-based
language, that is if the Rust community adopts Tree Borrows as the definitive
aliasing model for Rust. Tree Borrows is likely a better choice than Stacked
Borrows, since Tree Borrows considers more features such as dereferencing
from pointer arithmetic outside the retag range and two-phase borrows, and
Stacked Borrows is incompatible with some important compiler optimiza-
tions, such as read-read reorderings. Thus a new λRust formalization and
lifetime logic may need to capture the behavior of Tree Borrows. The SOS of
λRust would need to adopt Tree Borrows, and the lifetime logic and the proof
of the the fundamental theorem of logical relations for λRust would likely need to
be updated and refactored as well.

VeriFast Tree Borrows Proposal VeriFast [33] is an automated verification
framework for stateful and multithreaded programs based on separation
logic. Jacobs [10] proposes a set of rules to verify programs against Tree

74

6.4. Related Work

Borrows in VeriFast. Unlike our work, their proposal has not yet been proven
sound nor adequate with respect to Tree Borrows. A key difference between
our work and theirs is that they do not have an explicit logical tree points-to.
Rather, their logical connectives appear to encode Tree Borrows with the
separate points-tos for each node, tokens determining whether nor not there
is permission to end a reference, and connectives that signify parent-child
relationships between nodes in a tree. Furthermore, Jacobs [10] does not
feature explicit Tree Borrows permissions. It is unclear how their logical
connectives and laws exactly relate to the Tree Borrows state machine. Jacobs
[10] claims to support protectors and interior mutability, which was out
of scope for our work. In general, their proposal seems to be sound with
respect to Stacked Borrows as well. This likely entails that their proposal
does not support two-phase borrows via the Reserved permission, nor pointer
arithmetic outside of the explicit retag bounds, which we support. In future
work, it may be possible to build a soundness proof for the laws in Jacobs
[10] based on our framework.

75

Bibliography

[1] Umut Acar and Daniel Sleator. 2025. Binary Search Trees. In 15-210 Par-
allel and Sequential Data Structures and Algorithms - Notes. Carnegie Mel-
lon University. https://www.cs.cmu.edu/afs/cs/academic/class/

15210-f15/www/index.html Lecture Notes for 15-210.

[2] Clément Allain, Frédéric Bour, Basile Clément, François Pottier, and
Gabriel Scherer. 2025. Tail Modulo Cons, OCaml, and Relational Sepa-
ration Logic. Proc. ACM Program. Lang. 9, POPL, Article 79 (Jan. 2025),
27 pages. doi:10.1145/3704915

[3] Xinglu Chen. 2025. Adding Finer-Grained Tracking of Interior Mutability
to Tree Borrows. Bachelor’s thesis, ETH Zurich, Zurich, Switzerland.

[4] Athan Clark. 2025. rose-trees: Various trie implementations in Haskell.
https://hackage.haskell.org/package/rose-trees

[5] MiniRust Contributors. [n. d.]. MiniRust. https://github.com/

minirust/minirust

[6] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek
Dreyer. 2019. RustBelt meets relaxed memory. Proc. ACM Program. Lang.
4, POPL, Article 34 (Dec. 2019), 29 pages. doi:10.1145/3371102

[7] Lennard Gäher, Michael Sammler, Ralf Jung, Robbert Krebbers, and
Derek Dreyer. 2024. RefinedRust: A Type System for High-Assurance
Verification of Rust Programs. Proc. ACM Program. Lang. 8, PLDI, Article
192 (June 2024), 25 pages. doi:10.1145/3656422

[8] Lennard Gäher, Michael Sammler, Simon Spies, Ralf Jung, Hoang-
Hai Dang, Robbert Krebbers, Jeehoon Kang, and Derek Dreyer. 2022.
Simuliris: a separation logic framework for verifying concurrent pro-
gram optimizations. Proc. ACM Program. Lang. 6, POPL, Article 28 (Jan.
2022), 31 pages. doi:10.1145/3498689

76

https://www.cs.cmu.edu/afs/cs/academic/class/15210-f15/www/index.html
https://www.cs.cmu.edu/afs/cs/academic/class/15210-f15/www/index.html
https://doi.org/10.1145/3704915
https://hackage.haskell.org/package/rose-trees
https://github.com/minirust/minirust
https://github.com/minirust/minirust
https://doi.org/10.1145/3371102
https://doi.org/10.1145/3656422
https://doi.org/10.1145/3498689

Bibliography

[9] Armaël Guéneau, Johannes Hostert, Simon Spies, Michael Sammler,
Lars Birkedal, and Derek Dreyer. 2023. Melocoton: A Program Logic
for Verified Interoperability Between OCaml and C. Proc. ACM Program.
Lang. 7, OOPSLA2, Article 247 (Oct. 2023), 29 pages. doi:10.1145/
3622823

[10] Bart Jacobs. 2024. vf-rust-aliasing. https://github.com/btj/

vf-rust-aliasing. f4daea709e32734f43b9735b5fa30d330332c570.

[11] Ralf Jung. 2024. Miri: Practical Undefined Behavior Detection for Rust
(Keynote). In Proceedings of the 19th ACM International Workshop on Im-
plementation, Compilation, Optimization of OO Languages, Programs and
Systems (Vienna, Austria) (ICOOOLPS 2024). Association for Computing
Machinery, New York, NY, USA, 1. doi:10.1145/3679005.3695733

[12] Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. 2019.
Stacked borrows: an aliasing model for Rust. Proc. ACM Program. Lang.
4, POPL, Article 41 (Dec. 2019), 32 pages. doi:10.1145/3371109

[13] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
2017. RustBelt: securing the foundations of the Rust programming
language. Proc. ACM Program. Lang. 2, POPL, Article 66 (Dec. 2017),
34 pages. doi:10.1145/3158154

[14] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016.
Higher-order ghost state. In ICFP. 256–269.

[15] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars
Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular
foundation for higher-order concurrent separation logic. Journal of
Functional Programming 28 (2018), e20. doi:10.1017/S0956796818000151

[16] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and In-
variants as an Orthogonal Basis for Concurrent Reasoning. In POPL.
637–650.

[17] Robbert Krebbers. 2023. Efficient, Extensional, and Generic Finite Maps
in Coq-std++. In Coq Workshop.

[18] Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive
proofs in higher-order concurrent separation logic. SIGPLAN Not. 52, 1
(Jan. 2017), 205–217. doi:10.1145/3093333.3009855

[19] Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart.
2012. The CompCert Memory Model, Version 2. Research report RR-7987.
INRIA. http://hal.inria.fr/hal-00703441

77

https://doi.org/10.1145/3622823
https://doi.org/10.1145/3622823
https://github.com/btj/vf-rust-aliasing
https://github.com/btj/vf-rust-aliasing
https://doi.org/10.1145/3679005.3695733
https://doi.org/10.1145/3371109
https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3093333.3009855
http://hal.inria.fr/hal-00703441

Bibliography

[20] Daniël Louwrink. 2021. A Separation Logic for Stacked Borrows. Master’s
Thesis. Universiteit van Amsterdam. https://eprints.illc.uva.nl/

id/eprint/1790/

[21] William Mansky and Ke Du. 2024. An Iris Instance for Verifying Com-
pCert C Programs. Proc. ACM Program. Lang. 8, POPL, Article 6 (Jan.
2024), 27 pages. doi:10.1145/3632848

[22] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memar-
ian, Derek Dreyer, and Deepak Garg. 2021. RefinedC: automating the
foundational verification of C code with refined ownership types. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation (Virtual, Canada) (PLDI 2021).
Association for Computing Machinery, New York, NY, USA, 158–174.
doi:10.1145/3453483.3454036

[23] Michael Sammler, Simon Spies, Youngju Song, Emanuele D’Osualdo,
Robbert Krebbers, Deepak Garg, and Derek Dreyer. 2023. DimSum: A
Decentralized Approach to Multi-language Semantics and Verification.
Proc. ACM Program. Lang. 7, POPL, Article 27 (Jan. 2023), 31 pages.
doi:10.1145/3571220

[24] Remy Seassau, Irene Yoon, Jean-Marie Madiot, and François Pottier.
2025. Formal Semantics and Program Logics for a Fragment of OCaml.
Proc. ACM Program. Lang. 9, ICFP, Article 240 (Aug. 2025), 32 pages.
doi:10.1145/3747509

[25] The std++ team. [n. d.]. Rocq-std++. https://gitlab.mpi-sws.org/

iris/stdpp. 773a75ac897523c6c6fbfd6cbbb6a2611452c396.

[26] The Iris Team. [n. d.]. Iris. https://gitlab.mpi-sws.org/iris/iris.
c5014d246b2cc5d1bf79d3ba362501dd7b447f74.

[27] The Iris Team. 2024. The Iris 4.3 Reference. https://iris-project.

org/.

[28] The Rust Project Developers. 2025. The Rust Programming Language.
https://doc.rust-lang.org/book/title-page.html. Accessed: 2025-
09-16.

[29] The Rust Project Developers. 2025. Rust Unsafe Code Guidelines Ref-
erence. https://rust-lang.github.io/unsafe-code-guidelines/

introduction.html. Accessed: 2025-09-11.

[30] Andrea Vedaldi. 2025. Binary trees. In B16 Algorithms and Data Struc-
tures 1 - Notes. University of Oxford. https://www.robots.ox.ac.uk/

~vedaldi/assets/teach/2024/b16/notes/4-binary-trees.html Lec-
ture Notes for B16.

78

https://eprints.illc.uva.nl/id/eprint/1790/
https://eprints.illc.uva.nl/id/eprint/1790/
https://doi.org/10.1145/3632848
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3571220
https://doi.org/10.1145/3747509
https://gitlab.mpi-sws.org/iris/stdpp
https://gitlab.mpi-sws.org/iris/stdpp
https://gitlab.mpi-sws.org/iris/iris
https://iris-project.org/
https://iris-project.org/
https://doc.rust-lang.org/book/title-page.html
https://rust-lang.github.io/unsafe-code-guidelines/introduction.html
https://rust-lang.github.io/unsafe-code-guidelines/introduction.html
https://www.robots.ox.ac.uk/~vedaldi/assets/teach/2024/b16/notes/4-binary-trees.html
https://www.robots.ox.ac.uk/~vedaldi/assets/teach/2024/b16/notes/4-binary-trees.html

Bibliography

[31] Neven Villani, Johannes Hostert, Derek Dreyer, and Ralf Jung. 2025. Tree
Borrows. Proc. ACM Program. Lang. 9, PLDI, Article 188 (June 2025),
24 pages. doi:10.1145/3735592

[32] Simon Friis Vindum and Lars Birkedal. 2021. Contextual refinement of
the Michael-Scott queue (proof pearl). In Proceedings of the 10th ACM
SIGPLAN International Conference on Certified Programs and Proofs (Virtual,
Denmark) (CPP 2021). Association for Computing Machinery, New York,
NY, USA, 76–90. doi:10.1145/3437992.3439930

[33] Frédéric Vogels, Bart Jacobs, and Frank Piessens. 2015. Featherweight
VeriFast. Log. Methods Comput. Sci. 11, 3 (2015). doi:10.2168/LMCS-11(3:
19)2015

79

https://doi.org/10.1145/3735592
https://doi.org/10.1145/3437992.3439930
https://doi.org/10.2168/LMCS-11(3:19)2015
https://doi.org/10.2168/LMCS-11(3:19)2015

Appendix A

Upstreamed Contributions

Here we list the upstreamed merge requests that resulted from this work. We
order them by the merge date for each repository.

Rocq-std++

• MR #599: Vector Forall lemmas.

• MR #611: fmap imap compose.

• MR #609: kmap lemmas for map to list and list to map.

• MR #618: list to set auxiliary lemmas.

• MR #612: map seq and map seqZ auxiliary lemmas.

• MR #614: Lemma map to list update.

• MR #603: Lookup lemmas for union list over finite maps.

• MR #620: Forall exists Forall2 lemmas.

• MR #596: Zip list lemmas.

• MR #610: Finite map alter lemmas.

Iris

• MR #1113: Fix HeapLang documentation typo.

• MR #1116: big opL zip seq lemmas.

• MR #1131: big op for kmap, map seq, and map seqZ.

Iris Contributions

• MR #5: Finite map transposition.

80

https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/599
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/611
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/609
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/618
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/612
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/614
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/603
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/620
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/596
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/610
https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/1113
https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/1116
https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/1131
https://gitlab.mpi-sws.org/iris/iris-contrib/-/merge_requests/5

	Contents
	Introduction
	Our Contribution
	Thesis Outline
	Conventions and Notation

	Background
	Rust and Tree Borrows
	Rust References
	Tree Borrows

	Iris
	Ghost Maps
	The State Interpretation and Points-tos
	Primitive Laws
	Lambda Rust and Block-based Memory

	Tree Library
	Core Definitions
	Relations on Trees
	Monadic Transformations
	Tree Union

	The Program Logic Interface
	A Core Calculus with Tree Borrows
	Syntax
	Operational Semantics

	Program Logic
	A Grand Tour
	Hoare Logic Laws for Tree Borrows
	Permission Weakening Example
	Concurrent Block Separation

	Model
	Monolithic Ghost Trees
	Pointwise Permission Weakening
	Subtree Deletion
	Lateral Ghost Tree Separation
	Well-formed Ghost Trees
	Protector Agreement
	Final Thoughts and Challenges

	Conclusion
	Implementation
	Limitations
	Possible Extensions
	Related Work

	Bibliography
	Upstreamed Contributions

